Bobbie Wagoner

6月 142018

In SAS Visual Analytics 8.2 on SAS Viya 3.3, there are a number of new data features available. Some of these features are completely new, and some are features from the 7.x release that had not yet been included in the 8.1 release.  I’ll cover a few of these new features in this post.

First of all, the Data pane interface has changed to enable users to access actions via fewer and better organized menus.

Data item properties can also be displayed for viewing or editing with a single click.

The new Change data source action displays a Repair report window if report data items are not in the new data source.  The window enables you to replace the missing data items with replacement data items from the new data source before continuing with the change.

Speaking of mapping, in SAS Visual Analytics 8.2, linked selections and filters can automatically be add to objects, and the objects may use different data sources. In that case, you can manually map data sources from the data pane.  The + icon enables you to add additional pairs of mappings.

When you create a new Geography data item in SAS Visual Analytics 8.2, in addition to using Predefined names and codes or your own custom latitude and longitude data items, you can now also use custom polygon shapes to display your own custom regions. Once you select Custom polygon shapes, you specify, in additional dialogs, the characteristics of your polygon provider.  You can use a CAS table or an Esri Feature Service.

For more information on custom polygons, see my previous blog here.

If you need to use and Esri shape file for your polygon data, there are macros available in VA 8.2 to convert the data to a SAS dataset and to load the data into CAS.

  • %SHPCNTNT display the contents of the shape file
  • %SHPIMPRT converts the shapefile into a SAS dataset and loads it into CAS.

The Custom Sort feature is also back in SAS Visual Analytics 8.2. Just right-click the data item, select Custom sort, and then select and order your data values.

For creating a new derived data item, there are several new calculations available for measures:

And speaking of creating calculated data items, you’ll want to check out three useful new operators that are available in SAS Visual Analytics 8.2:

A look at the new data pane and data item features in SAS Visual Analytics 8.2 was published on SAS Users.

4月 192018

In SAS Visual Analytics 7.4 on 9.4M5 and SAS Visual Analytics 8.2 on SAS Viya, the periodic operators have a new additional parameter that controls how filtering on the date data item used in the calculation affects the calculated values.

The new parameter values are:

SAS Visual Analytics filters

These parameter values enable you to improve the appearance of reports based on calculations that use periodic operators. You can have periods that produce missing values for periodic calculations removed from the report, but still available for use in the calculations for later periods. These parameter settings also enable you to provide users with a prompt for choosing the data to display in a report, without having any effect on the calculations themselves.

The following will illustrate the points above, using periodic Revenue calculations based on monthly data from the MEGA_CORP table. New aggregated measures representing Previous Month Revenue (RelativePeriod) and Same Month Last Year (ParallelPeriod) will be displayed as measures in a crosstab. The default _ApplyAllFilters_ is in effect for both, as shown below, but there are no current filters on report or objects.

The Change from Previous Month and Change From Same Month Last Year calculations, respectively, are below:

The resulting report is a crosstab with Date by Month and Product Line in the Row roles, and Revenue, along with the 4 aggregations, in the Column roles.  All calculations are accurate, but of course, the calculations result in missing values for the first month (Jan2009) and for the first year (2009).

An improvement to the appearance of the report might be to only show Date by Month values beginning with Jan2010, where there are no non-missing values.  Why not apply a filter to the crosstab (shown below), so that the interval shown is Jan2010 to the most recent date?

With the above filter applied to the crosstab, the result is shown below—same problem, different year!

This is where the new parameter on our periodic operators is useful. We would like to have all months used in the calculations, but only the months with non-missing values for both of the periodic calculations shown in the crosstab. So, edit both periodic calculations to change the default _ApplyAllFilters_ to _IgnoreAllTimeFrameFilters_, so that the filters will filter the data in the crosstab, but not for the calculations. When the report is refreshed, only the months with non-missing values are shown:

This periodic operator parameter is also useful if you want to enable users to select a specific month, for viewing only a subset of the crosstab results.

For a selection prompt, add a Drop-Down list to select a MONYY value and define a filter action from the Drop-Down list to the Crosstab. To prevent selection of a month value with missing calculation values, you will also want to apply a filter to the Drop-Down list as you did for the crosstab, displaying months Jan2010 and after in the list.

Now the user can select a month, with all calculations relative to that month displayed, shown in the examples below:

Note that, at this point, since you’ve added the action from the drop-down list to the crosstab, you actually no longer need the filter on the crosstab itself.  In addition, if you remove the crosstab filter, then all of your filters will now be from prompts or actions, so you could use the _IgnoreInteractiveTimeFrameFilters_ parameter on your periodic calculations instead of the _IgnoreTimeFrameFilters_ parameter.

You will also notice that, in release 8.2 of SAS Visual Analytics that the performance of the periodic calculations has been greatly improved, with more of the work done in CAS.

Be sure to check out all of the periodic operators, documented here for SAS Visual Analytics 7.4 and SAS Visual Analytics filters on periodic calculations: Apply them or ignore them! was published on SAS Users.

2月 082018

In my last article, I worked with an example of using custom polygon data to create a regional geo map in SAS Visual Analytics 7.4. In this article, I will use almost the same example to illustrate the ease of implementing custom polygons to produce the same regional map in SAS Visual Analytics 8.2.

In this example, as in my last blog, the site has sales data for each sales region in the US and would like to display a geo map of the regions.

The six sales regions are:

Custom polygons in SAS Visual Analytics

We will again start with the MAPSGFK.US_STATES dataset, which contains the data required to overlay all states of the US on a VA region geomap and has these columns:

As in my last post, we will add the sales regions (REGION) column and values using data step code, and then use GREMOVE to remove the state boundaries, leaving the region boundary points.  For a look at that code, see my previous blog.

The following datastep adds the necessary columns/values to the polygon dataset so that the form of the data is what is expected by VA.  Note that the LAT and LONG columns are already in unprojected form, so we just assign those values to Y and X, so our column names will more closely match what we will see in the VA interface when creating the geographic data item.   We also create a SEQUENCE column, required by VA 8.2,  using the values of the internal variable, _n_.

data mydata.regions;
   set mydata.regions;

The polygon table, REGIONS,  now has the following columns.

The dataset containing the region and measure data, REGIONSALES contains these columns:

Both datasets should be loaded into memory. Sign in to SAS Visual Analytics – Explore and Visualize Data and create a new report with data source REGIONSALES.

Create a new Geography data item from REGION as shown below, also specifying a New Polygon Provider with values shown on the next several screen shots.  Give the new provider a name and label, and specify the CAS server, library, and table name.

Scroll down to add the ID, Sequence, Segment, latitude and longitude columns.

The new geography data item, after clicking OK:

Now create a Geo Map of type Regions as shown:

Please Creating a regional map with custom polygons in SAS Visual Analytics 8.2 was published on SAS Users.

2月 082018

By default, SAS Visual Analytics 7.4 supports country and state level polygons for regional geomaps. In SAS Visual Analytics 7.4, custom shape files are now supported, as well. This means that if a site has their own custom polygon data that defines custom regions, it’s possible to create a region geomap that displays those regions.

Implementing the process requires completing some preparatory steps, explicitly execution of some SAS code, but the steps are explained in Appendix 2 of the SAS Visual Analytics 7.4: Administration Guide. The SAS program that completes the steps is provided for download at

Two examples using the program are provided in Appendix 2 for US counties and German provinces. The instructions in Appendix 2 assume that the custom polygon data is provided in ESRI shape file format, which is likely the most common use-case. The site will need access to a SAS programming environment and SAS/GRAPH software, and whoever completes the process will need access to the SAS Visual Analytics configuration directory and the ability to restart services—so an administrator-type person will be required.

One common request is to provide a regional geomap, where the regions are site-defined groups of states or provinces of a country. In this example problem, the site has sales data for each sales region in the US and would like to display a geo map of the regions.

Custom regional map in SAS Visual AnalyticsFor this type of region/province example, you will likely be able to use one of the maps already provided by SAS in the MAPSGFK library to produce your region boundaries. For more information on the datasets in the MAPSGFK library, see this paper. 

The MAPSGFK.US_STATES dataset contains the data required to overlay all states of the US on a VA region geomap and has these columns:

The highlighted columns, STATECODE, LONG, and LAT will be particularly useful, but first, the sales region (REGION) column and values must be added using simple data step code. The unnecessary FIPS code (STATE) can be dropped in the same DATA step.  Note that the region values are assigned in upper case, as these will later be converted to ID values, which VA expects to be in upper case.

data regions;
   length region $ 12;
   drop state;
   set mapsgfk.us_states;
      if statecode in ('AK','HI','PR') then delete;
      else if statecode in ('WA','MT','OR','ID','WY')
         then region='NORTHWEST';
      else if statecode in ('CA','NV','UT','AZ','CO','NM')
         then region='SOUTHWEST'; 
      else if statecode in ('ND','SD','NE','MN','WI','MI','IA','IL','IN')
         then region='NORTHCENTRAL'; 
      else if statecode in ('KS','OK','TX','MO','AR')
         then region='SOUTHCENTRAL'; 
      else if statecode in ('ME','NH','VT','MA','RI','CT','NY','PA','NJ','OH','DE',
'MD','DC')then region='NORTHEAST';
      else if statecode in ('KY','WV','VA','TN','NC','MS','AL','LA','GA','SC','FL')
         then region='SOUTHEAST';

The data is then sorted by the REGION values, a requirement of the SAS/GRAPH GREMOVE procedure, which is used to remove the internal state boundary data points, leaving the region boundary points only.

proc sort data=regions;
   by region;
 proc gremove data=regions out=mapscstm.regions1;
    by region;
    id statecode;

To complete the process, since the LAT and LONG values are already in the form that VA needs (unprojected) and we are using a SAS dataset rather than the ESRI shape file format, we’ll only use a part of the code from the downloadable program mentioned at the beginning of the blog.

First, create a mapscstm directory under /SASHome/SASFoundation/9.4 to store the custom polygon dataset.  Make sure that the library is accessible to the SAS session by including a libname statement in the file, found in config/Lev1/SASApp, and then restarting the Object Spawner.


libname MAPSCSTM “SASHome/SASFoundation/9.4/mapscstm”;

Tip:  Be sure to back up the original ATTRLOOKUP and CENTLOOKUP datasets before running any additional code, as you will be modifying the originals.

To complete creation of the polygon dataset, you will need to execute only a part of the downloadable program to:
• Make sure that your polygon dataset has all of the columns expected by SAS Visual Analytics.
• Add the region attributes to the ATTRLOOKUP.
• Add the region center point locations to the CENTLOOKUP dataset.

%let REGION_LABEL=USRegions;   /* The label for the custom region */
 %let REGION_PREFIX=R1; /* unique ISO 2-Letter Code  */
 %let REGION_ISO=000; /* unique ISO Code  */
 %let REGION_DATASET=MAPSCSTM.REGIONS1;  /* Polygon data set to be 
              created - be sure to use suffix "1" */

Note that the downloadable program includes additional macro assignments and additional code, but since our data is already in the form of a SAS dataset, rather than ESRI shape file format, we won’t be using all of the code.

The following datastep adds the necessary columns/values to the polygon dataset so that the form of the data is what is expected by VA.  Note that the LAT and LONG columns are already in unprojected form, so we just assign the same values to X and Y.  (VA doesn’t actually use the X,Y columns from the polygon dataset.)

   where density <= 3; 
   ISO = "&REGION_ISO.";
   LAKE = 0;
   AdminType = "regions";

Then PROC SQL steps are executed to add rows relative to the custom polygons to the ATTRLOOKUP and CENTLOOKUP datasets:

This step adds the USRegions row to ATTRLOOKUP:

proc sql;
   insert into valib.attrlookup
      values ( 
         "&REGION_LABEL.",         /* IDLABEL=State/Province Label */
         "&REGION_PREFIX.",        /* ID=SAS Map ID Value */
         "&REGION_LABEL.",         /* IDNAME=State/Province Name */
         "",                       /* ID1NAME=Country Name */
         "",                       /* ID2NAME */
         "&REGION_ISO.",           /* ISO=Country ISO Numeric Code */
         "&REGION_LABEL.",         /* ISONAME */
         "&REGION_LABEL.",         /* KEY */
         "",                       /* ID1=Country ISO 2-Letter Code */
         "",                       /* ID2 */
         "",                       /* ID3 */
         "",                       /* ID3NAME */
         0                         /* LEVEL (0=country level, 1=state level) */

This step adds a row to ATTRLOOKUP for each individual region:

proc sql;
   insert into valib.attrlookup
      select distinct 
         IDNAME,            /* IDLABEL=State/Province Label */
         ID,                /* ID=SAS Map ID Value */
         IDNAME,            /* IDNAME=State/Province Name */
         "&REGION_LABEL.",  /* ID1NAME=Country Name */
         "",                /* ID2NAME */
         "&REGION_ISO.",    /* ISO=Country ISO Numeric Code */
         "&REGION_LABEL.",  /* ISONAME */
         trim(IDNAME) || "|&REGION_LABEL.",  /* KEY */
         "&REGION_PREFIX.",   /* ID1=Country ISO 2-Letter Code */
         "",                  /* ID2 */
         "",                  /* ID3 */
         "",                  /* ID3NAME */
         1                    /* LEVEL (1=state level) */

This step calculates and adds the central location point for each of the regions to the CENTLOOKUP dataset.   The site data contains only the 48 contiguous states (no Alaska or Hawaii). If Alaska and Hawaii had been included, a different algorithm would need to be used to calculate the central location.

proc sql;
   /* Add custom region */
   insert into valib.centlookup
      select distinct
         "&REGION_DATASET." as mapname,
         "&REGION_PREFIX." as ID,
         avg(x) as x,
         avg(y) as y
      from &REGION_DATASET.;
   /* Add custom provinces */
   insert into valib.centlookup
      select distinct
         "&REGION_DATASET." as mapname,
         ID as ID,
         avg(x) as x,
         avg(y) as y
      from &REGION_DATASET.
         group by id;

After executing the code above, you will need to restart the Web Application server, so that SAS Visual Analytics has access to the new polygons.

Code is also included in the downloadable program to create a dataset for validating your results. The validate dataset includes a column for the ID and IDNAME of the regions, in addition to two randomly calculated measures.  In our case, we will instead just use our original REGIONSALES dataset containing the regional sales data.

1. Sign into SAS Visual Analytics and create a new exploration with data source REGIONSALES.
2. Create a Geo data item from State: Right-click Regions, select Geography?Subdivision(State, Province) Names. From the Country or Region drop-down list, select the USRegions region label.
3. Create a geo map visualization. Select Regions for the map style, Regions for the Geography role, and salesamt for the Color role.

Your regions should display, similar to this:

You can also include the region data item in a hierarchy with the state data item to produce a drill-down region map:

Or a bubble or coordinate map:

I hope this example has been helpful to users of SAS Visual Analytics 7.4.  In my next blog, you will see that this process is tremendously simplified by new mapping features in SAS Visual Analytics 8.2.

Creating a custom regional map in SAS Visual Analytics 7.4 was published on SAS Users.

9月 082017

In SAS Visual Analytics 8.1, report creators have the ability to include drive-distance and drive-time in their geographical maps, but only if their site has an Esri ArcGIS Online account and they have valid credentials for the account.

In the user Settings for SAS Visual Analytics Geographic Mapping 8.1 release, there are three choices for selection of a geographic map provider.  The map provider creates the background map for geo maps and for network diagrams that display a map.

The map provider options are:

  • OpenStreet Map service, hosted at SAS.
  • Esri ArGIS Online Services, which only requirFinale acceptance of the terms and conditions.
  • Esri premium services, which requires a credential validation.

If Esri premium services is selected, there is an additional prompt for valid credentials, and you must still accept the Esri ArcGIS Online Services terms in order to select the premium services checkbox.

It’s also worth pointing out here, that even if you have Esri premium credentials, in order for these credentials to be validated in SAS Visual Analytics, you must also be a member of the ESRI Users custom group.  Users can be added to this group in SAS Environment Manager, as shown below.

Note that without the Esri ‘premium’ service and validated credentials, when you right-click and Create geographic selection in your report map, you are only able to select the Distance selection, which displays the radial distance for the selection point.

With premium services in effect, you can also select drive-time or drive-distance.  An example of a drive-time selection is shown here.  Drive-time creates an irregular selection based on the distance that can be driven in the specified amount of time.

A drive-distance example is shown below.  Drive-distance creates an irregular selection based on the driving distance using roads.

When selecting drive-time or drive distance, you can also add breaks to show, as in the example below, the 5-mile distance, the 10-mile distance, and the 15-mile distance on the maps.

It’s also worth pointing out, that if a viewer of the report has not had Esri premium credentials validated, the viewer will be unable to view the drive-distances and drive-time features.  The settings for users of the report viewer are also stored in the Report Viewer Geographic Mapping user settings.

If a user is adding a connection to the server in SAS Mobile BI 8.15 and their account is a member of the Esri Users group, they will be prompted for their Esri premium credentials when adding the server connection:

I hope you’ve found this post helpful.

How do I access the Premium Esri Map Service for my SAS Visual Analytics reports? was published on SAS Users.

6月 292017

In my last blog, we examined the data pane in SAS Visual Analytics 8.1. That blog discussed how to have the data pane display the data items of your active data source, and how to perform tasks such as viewing measure details, changing data item properties, and creating geographic data items, hierarchies, and custom categories.  In this blog, we’ll look at creating new calculated data items and calculated aggregations.

If you recall, l you display the Data pane in the Visual Analytics interface by clicking the Data icon on the left menu.

A calculated data item is a new data item created from existing data by using an expression.

  • Calculations are performed on un-aggregated data—the expression is evaluated on each row before aggregations are calculated.
  • Calculated data items can accept parameters.
  • A hierarchy can contain calculated category data items.
  • Calculated data items can be changed to geography data items and used in geo maps.

You can create a derived calculation from a category or measure data item by right-clicking on the data item and selecting Create calculation from data item.

For a category data item, you can create a distinct count, count, or number missing. Creating a derived calculation from a category data item:

For a measure data item, you can create a percent of total, or a periodic calculation based on one of your date data items. Creating a derived calculation from a measure data item:

Notice that in both cases, the new data item is an aggregation, so the new item will appear under the Aggregated Measure category in the data pane.

Note:  In order to use the periodic calculation types, your selected data item must include the year.

You can also edit these new data items by right-clicking on the data item and selecting Edit. Editing a derived calculation:

There is now a single interface for creating calculated data items of type Numeric, Character, Date or Datetime or Aggregated measures.

  • This interface provides both Visual mode and Text mode for viewing and editing the expression.
  • You can drag and drop data items or parameters and operators onto the expression in either mode.
  • In text mode, you can also type in your expression.

Creating a calculated data item or aggregated measure:

Specifying the calculation result type and format:

Some notes for using operators in calculations and aggregations:

  • Operators are provided for both calculations and aggregations.
  • You can expand and collapse each category of operators.
  • If you add an Aggregated operator to an expression, the result type will be changed to Aggregated Measure.
  • You cannot have nested aggregations in an expression.You also have access to periodic operators and simple and advanced aggregated operators for calculation aggregations.

In the same interface, you have access to simple and advanced numeric operators, simple and advanced text operators, along with boolean, date and time, and comparison operators for your calculations.

You also have access to periodic operators and simple and advanced aggregated operators for calculation aggregations.

The most important point to remember in using this interface is to think ahead as to whether you are creating a calculation (operating on each row) or an aggregation (operating across rows) and specify the data type and format before you begin to drag and drop data items and operators.  The default data type is Numeric, but if you add an aggregation operator, the type will automatically switch to Aggregated Measure.

Remember that you also create calculated items of character, date, and datetime data types–and you can choose from a list of date and datetime formats for those data types.

The SAS Visual Analytics 8.1 Data Pane: Creating Calculations and Aggregations was published on SAS Users.

6月 052017

Refining your data for effective reports is even easier in the 8.1 release of SAS Visual Analytics. In this blog post, I’ll take a look at the data pane, how it displays data from your active data source, and a few tasks that you might want to perform, such as viewing measure details, changing data item properties, and creating geographic data items, hierarchies, and custom categories.  In a future blog, I’ll look at creating filters, new calculated data items, and calculated aggregations.

In the SAS Visual Analytics interface, you can display the Data pane by clicking the Data icon on the left menu.

Measure details

You can view data item properties and make these changes:

  • The name of a data item.
  • The Classification of Measure or Category data item.
  • The format of a Measure or Date/Time/Datetime data item.
  • The aggregation of a Measure data item.
  • Note:  User-defined formats for Category data items are honored, but cannot be changed.  The user-defined format must be available to the CAS server where the data is loaded.

A Measure classification can be changed to Category or Geography. A Category classification can be changed to Geography.  Date and Tim classifications cannot be changed.

You can modify the aggregation for a Measure data item:

You can modify measure formats:

  • You can expand to display available Duration and Currency formats.
  • Over thirty different Currency formats are available for local or international currency.  (Example: $56,790 or USD56,789)

Geography data items identity a geographic region or location, and are typically used to visualize data on a geographic map.

  • You can create geography data items by using predefined geography classifications such as countries or states.
  • You can create a custom geographic classification by providing latitude and longitude coordinates in your data source.
  • For predefined classifications, the values of your category data items must match the lookup values documented here.

Designating a Geography data item:

Designating a custom Geography data item:

A hierarchy enables you to add drill-down functionality to a report.

  • A hierarchy can display information from general to specific.
  • You can create category, date/datetime, or geography hierarchies.
  • Not all report objects support all types of hierarchies.

  • A custom category is a category data item which associates a set of alphanumeric values with intervals, ranges, or specific values of a data item.
  • A custom category can be based on a category or a measure data item.
  • A custom category can provide functionality in a report similar to that of a user-defined format—without having to have a format previously associated with the data item.

1-20 = ‘First group’
21-30 = ‘Second group’
31-40 = ‘Third group’

Depending on the report object, some roles require only one value; other roles may require multiple values.

You can right-click on a data item in the Roles pane to remove the data item from a role.

Duplicating a data item can enable you to display data in two different ways.

Duplicating the Date data item with 939 different values can enable you to create a report that analyzes production on each day of the week: Monday, Tuesday, Wednesday,…

Duplicating a measure data item can enable you to use the column as a category data item in reports as well.

Note: You can only delete data items that you have created, such duplicated data items or calculated data items.  Deleting a data item means that it no longer appears in the data pane.

This covers many of the basic tasks that you can complete in the new data pane. In my next blog, I’ll take a look at the visual and text editors for creating filter expressions and calculated items and aggregations in the data pane.

The new Data Pane in SAS Visual Analytics - It's painless! was published on SAS Users.

4月 102017

You can expand on the functionality of SAS Visual Data Builder in SAS Visual Analytics by editing the query code, adding code for pre- and post-processing, or even writing your own query.   You can process single tables or join multiple tables, writing the output to a LASR  library, a SAS library, or a DBMS library.  But you can also easily schedule your queries, right from the Visual Data Builder interface.

Here’s how.

When a query is open in the workspace of Visual Data Builder, you can schedule the query from the application by clicking the Schedule (clock) icon.

The scheduling server used is determined by the SAS Visual Data Builder Scheduling preferences setting, shown below.

By default, the Visual Analytics deployment includes the Operating System Services scheduling server, so it appears automatically as the default.

The Server Manager plug-in to SAS Management Console identifies the scheduling servers that are included in your deployment. You can specify a different scheduling server, such as Platform Suite for SAS server, if your deployment includes it.

Note:  The Distributed In-process scheduling server is not supported.

Any scheduling preferences that you change are used the next time you create and schedule a query. If you need to change the settings for a query that is already scheduled, you can use SAS Management Console Schedule Manager to redeploy the deployed job for the query.

When you schedule a query, the SAS statements are saved in a file in the default deployment directory path: SAS-config-dir/Lev1/SASApp/SASEnvironment/SASCode/Jobs.

In the examples in this blog, the SAS-config-dir is /opt/sasinside/vaconfig.
The metadata name of the directory is Batch Jobs.
The default SAS Application Server name associated with the directory is SASApp.

If you are working in a VA environment where multiple application servers are defined, you should be aware of the following SAS Notes at the links below, relating to the application’s choice of application servers for scheduling.

SAS Note 58186SAS® Visual Data Builder might use the wrong application server for scheduling
SAS Note 52977SAS® Visual Data Builder requires the default SAS® Application Server and the default scheduling servers to be located on the same physical machine

To schedule a query, open the query and select the Schedule (clock) icon. (The clock is grayed out if you have not saved the query.)

You can schedule the query to run immediately (Run now) or at a specified time event.  To define a time event, select the Select one or more triggers for this query button and click New Time Event.  Grouping events are not supported for the default server, but may be supported for other scheduling servers, such as Platform Suite.

You can schedule for One time only, or More than once, running Hourly, Daily, Weekly, Monthly, or Yearly.  The appearance of the interface and scheduling parameters change with your specification.

In this example, a One time only event is specified.


The time event specification gets recorded in the Trigger list on the Schedule page, and is selected in the Used column.

After you click OK in the Schedule window, you will get the confirmation below.

After the time event has passed, you can verify that the table has been loaded on the LASR Tables tab of the Visual Analytics Administrator.

When you schedule, the Visual Data Builder:

  • creates a job that executes the query.
  • creates a deployed job from the job.
  • places the job into a new deployed flow.
  • schedules the flow on a scheduling server.

The files are named according to vdb_query_id_timestamp.
In this example the files are named vdb_CustomerInfoData_1490112883364_timestamp.
When the query executes at the scheduled time, the SAS code that is written to the /opt/sasinside/vaconfig/Lev1/SASApp/SASEnvironment/SASCode/Jobs directory.  The query is run with the user ID that scheduled it.

If you right-click on Server Manager in SAS Management Console and view Deployment Directories, you will see that this is the Deployment directory (Batch Jobs) for SASApp.

In the /opt/sasinside/vaconfig/Lev1/SASApp/BatchServer/Logs directory, you can view the SAS Log.

The scheduling server script and log are in /opt/sasinside/vaconfig/Lev1/SchedulingServer/Ahmed/vdb_CustomerInfoData_14900112883364

Observe that the script was written to this location at the time the job was scheduled, rather than at execution time.

If you edit a data query that is already scheduled, you must click the schedule icon again so that the SAS statements for the data query are regenerated and saved.

If you edit the query again and specify additional time events, each event appears in the trigger list, and you can check which time event is to be used for scheduling.

If scheduling a query according to time events, you should also be aware of this Usage note:

Usage Note 55880: Scheduled SAS® Visual Data Builder queries are executed based on the time zone of the scheduling server 

And to add to the fun, also keep in mind that if your deployment includes SAS Data Integration Studio, you can also export a query as a Job and then perform the deployment steps using DI Studio.

Just right-click on the query in the SAS folder panel in Visual Data Builder and Select Export as a Job!

Easy Scheduling in Visual Data Builder - SAS Visual Analytics 7.3 was published on SAS Users.

3月 092017

Several months ago, I posted a blog about calculating moving averages for a measure in the Visual Analytics Designer. Soon after that, I was asked about calculating not only the average, but also the standard deviation over a period of months, when the data might consist of one or more repeated values of a measure for each month of a series of N months.  For the example of N=20 months, we might want to view the average and standard deviation over the last n months, where n is any number between 3 and 20.

The example report shown below allows the user to type in a number, n, between 3 and 20, to display a report consisting of the amount values for past n months, the amount values for Current Month Amt-Previous, the Avg over the last n months, the Standard Deviation over the last n months, and the absolute value of the (Current Month Amt – Previous Month Amt), divided by the Standard Deviation over the last n months. A Display rule is applied to the final Abs column, showing Green for a value less than 1 and red for a value greater than or equal to 1.

The data used in this example had multiple Amount values for each month, so we first used the Visual Data Builder to create a SUM aggregation for Amount for each unique Date value.  This step gives more flexibility in using the amount value for aggregations in the designer.

When the modified data source is initially added to the report, it contains only the Category data item Month, with a format of MMYYYY, and the measure Amount Sum for Month.

The data will be displayed in a list table. The first columns added to the table will be Month, displayed with a MMYYYY format, and Amount Sum for Month.

Specify the properties for the list table as below:

Since we want to display the last n months, we create a new calculated data item, Numeric Date, calculated as below, using the TREATAS operator on the Month data item:

Then we create the Current Month Amt-Previous aggregated measure using the RelativePeriod date operator:

Next, create the Avg over all displayed months aggregated measure as below:

Then, create the Std.Dev. over all displayed months aggregated measure as shown below:

Create the Abs (Current-Previous/StdDev) as shown below:

Create a numeric parameter, Number of Months, as shown, with minimum value of 3 (smallest value that a standard deviation will make sense) and maximum value of 20 (the number of months in our data). You can let the default (Current value) value be any value that you choose:

For the List Table, create a Rank, as shown below. Note that we are creating the rank on the Numeric Date (not the Month data item), and rather than a specific value for count, we are going to use the value of the parameter, Number of Months.

Create a text input object that enables the user to type in a ‘number of months’ between 3 and 20.

Associate the Parameter with the Text input object:

If you wish, you can add display rules to sound an alarm whenever there is an alarming month-to-month difference in comparison to the standard deviation for the months.

So the final result of all of the above is this report, which points out month-to-month differences, which might deserve further concern or investigation. Note that the Numeric Date value is included below just to enable you to see what those values look like—you likely would not want to include that calculated data item in your report.

Calculating standard deviation of a measure in Visual Analytics Designer was published on SAS Users.

9月 072016

Calculate a moving average using periodic operators in SAS Visual AnalyticsThumbAnalysts often use a simple moving average to get an idea of the trends in data. This is simply an average of a subset of time periods, and the size of the subset can differ depending on the application. The technique can be used with data based on time periods, such as sales data, expense data, telecom data, or stock market data. The average is called ‘moving’ because it is continually recomputed as more data becomes available. This type of average is also called a ‘rolling average’ or ‘running average’. In this post, I’ll share a little bit about how to use the periodic operators in SAS Visual Analytics Designer to calculate a simple moving average.

The report below, created in the designer, shows the summary of the Amount column by month. The Three-Month Moving Average column displays the average of a month and the previous two months’ Amount sums. The 3-month sum is simply divided by 3.

Calculate a moving average using periodic operators in SAS Visual Analytics

This Three-Month Moving Average column is an aggregation, calculated using the RelativePeriod Periodic operator.  Both the visual and the text forms of the aggregation are shown below:

Calculate a moving average using periodic operators in SAS Visual Analytics2

Calculate a moving average using periodic operators in SAS Visual Analytics3

The RelativePeriod operator returns aggregated values - sum of Amount, in this case - relative to the current period – in this case, the previous month. The data item for the period calculation is Month, which is a date value with an associated YYYYMM format. The interval is _ByMonth_, and the 0, -1, and -2 offset values represent the current month, the previous month, and the month before the previous, respectively. The division by three creates the 3-month moving average, but the number of RelativePeriod expressions and the divisor could be adjusted to calculate an average based on any number of months.

The report below displays a 3-Year Moving Average column.

Calculate a moving average using periodic operators in SAS Visual Analytics4

In this report, the RelativePeriod operator is used to calculate the three-year moving average. The data item for the period calculation is Year, which is a date value with an associated Year format.

Calculate a moving average using periodic operators in SAS Visual Analytics5

The interval is _ByYear_, with the 0, -1, and -2 offset values representing the current year, the previous year, and the year before the previous, respectively. Again, the number of RelativePeriod expressions and the divisor could be adjusted to calculate an average based on any number of years.

Calculate a moving average using periodic operators in SAS Visual Analytics6

Calculate a moving average using periodic operators in SAS Visual Analytics7

The ParallelPeriod operator is used in the report below to display a 3-month moving average based on amounts corresponding to the same month in each of the three years. This report, of course, has missing values for all months up until the third year of data.

Calculate a moving average using periodic operators in SAS Visual Analytics8

Calculate a moving average using periodic operators in SAS Visual Analytics9

The first moving average value to be calculated is based on data from January 2010, 2011, and 2012. The measure is Amount and the periodic item for the aggregation Month. The inner interval for the aggregation is _ByMonth_ and the outer interval is _ByYear_. The 0, -1, and -2 offset values represent months of the current year, the previous year, and the year before the previous, respectively. These ParallelPeriod expressions and the divisor could also be adjusted to calculate an average based a different divisor.

Calculate a moving average using periodic operators in SAS Visual Analytics10

Calculate a moving average using periodic operators in SAS Visual Analytics11

Do keep in mind that for all of these periodic aggregations the ‘aggregation by’ column representing month or year must be included in the report.

I hope these examples using the periodic operators will be helpful to you in creating your Visual Analytics reports.

tags: business intelligence, SAS Professional Services, SAS Visual Analytics

Calculate a moving average using periodic operators in SAS Visual Analytics Designer was published on SAS Users.