customer engagement

12月 192017
 

If you’ve ever used Amazon or Netflix, you’ve experienced the value of recommendation systems firsthand. These sophisticated systems identify recommendations autonomously for individual users based on past purchases and searches, as well as other behaviors. By supporting an automated cross-selling approach, they empower brands to offer additional products or services [...]

Customer Intelligence 360: The digital shapeshifter of recommendation systems was published on Customer Intelligence Blog.

1月 282017
 

Digital intelligence is a trending term in the space of digital marketing analytics that needs to be demystified. Let's begin by defining what a digital marketing analytics platform is:

Digital marketing analytics platforms are technology applications used by customer intelligence ninjas to understand and improve consumer experiences. Prospecting, acquiring, and holding on to digital-savvy customers depends on understanding their multidevice behavior, and derived insight fuels marketing optimization strategies. These platforms come in different flavors, from stand-alone niche offerings, to comprehensive end-to-end vehicles performing functions from data collection through analysis and visualization.

However, not every platform is built equally from an analytical perspective. According to Brian Hopkins, a Forrester analyst, firms that excel at using data and analytics to optimize their digital businesses will together generate $1.2 trillion per annum in revenue by 2020. And digital intelligence — the practice of continuously optimizing customer experiences with online and offline data, advanced analytics and prescriptive insights — supports every insights-driven business. Digital intelligence is the antidote to the weaknesses of analytically immature platforms, leaving the world of siloed reporting behind and maturing towards actionable, predictive marketing. Here are a couple of items to consider:

  • Today's device-crazed consumers flirt with brands across a variety of interactions during a customer life cycle. However, most organizations seem to focus on website activity in one bucket, mobile in another, and social in . . . you see where I'm going. Strategic plans often fall short in applying digital intelligence across all channels — including offline interactions like customer support or product development.
  • Powerful digital intelligence uses timely delivery of prescriptive insights to positively influence customer experiences. This requires integration of data, analytics and the systems that interact with the consumer. Yet many teams manually apply analytics and deliver analysis via endless reports and dashboards that look retroactively at past behavior — begging business leaders to question the true value and potential impact of digital analysis.

As consumer behavioral needs and preferences shifts over time, the proportion of digital to non-digital interactions is growing. With the recent release of Customer Intelligence 360, SAS has carefully considered feedback from our customers (and industry analysts) to create technology that supports a modern digital intelligence strategy in guiding an organization to:

  • Enrich your first-party customer data with user level data from web and mobile channels. It's time to graduate from aggregating data for reporting purposes to the collection and retention of granular, customer-level data. It is individual-level data that drives advanced segmentation and continuous optimization of customer interactions through personalization, targeting and recommendations.
  • Keep up with customers through machine learning, data science and advanced analytics. The increasing pace of digital customer interactions requires analytical maturity to optimize marketing and experiences. By enriching first-party customer data with infusions of web and mobile behavior, and more importantly, in the analysis-ready format for sophisticated analytics, 360 Discover invites analysts to use their favorite analytic tool and tear down the limitations of traditional web analytics.
  • Automate targeting, channel orchestration and personalization. Brands struggle with too few resources to support the manual design and data-driven design of customer experiences. Connecting first-party data that encompasses both offline and online attributes with actionable propensity scores and algorithmically-defined segments through digital channel interactions is the agenda. If that sounds mythical, check out a video example of how SAS brings this to life.

The question now is - are you ready? Learn more here of why we are so excited about enabling digital intelligence for our customers, and how this benefits testing, targeting, and optimization of customer experiences.

 

tags: Customer Engagement, customer intelligence, Customer Intelligence 360, customer journey, data science, Digital Intelligence, machine learning, marketing analytics, personalization, predictive analytics, Predictive Personalization, Prescriptive Analytics

Digital intelligence for optimizing customer engagement was published on Customer Intelligence.

6月 232016
 

When I joined SAS nearly 32 years ago, I didn’t set out to be its first Chief Customer Officer (CCO). I made it here by setting small goals for myself over the years, sharing those goals and attaining them step by step. It’s been a lot like training for a […]

Taking customer experience to heart was published on SAS Voices.