Data Visualization

2月 232017

Some would say that it's impossible for blind users to see charts and graphs. Those same people might have once said it was impossible for the visually impaired to see the particles that comprise an atom, or galaxies that are billions of light years away. Innovation would prove them wrong [...]

SAS Graphics Accelerator makes charts and graphs visible for blind users was published on SAS Voices by Ed Summers

1月 312017

You have all seen, or perhaps even created, some really bad graphics: Cluttered, confusing, too small, incomprehensible. Or worse, the author may have committed one of the three unforgivable sins of data visualization by deceptively distorting a map, truncating the axis so as to misrepresent the data, or used double […]

How to make your pie chart worse was published on SAS Voices.

12月 162016

“Analytics” and “data scientist” aren’t new terms, but they are trending buzzwords. The popularity of these concepts has created a false impression: Analytics are mysterious abstractions that can only be decoded if you have a white lab coat and an advanced degree in computer science. The reality couldn’t be more different. […]

No data scientist? No analytics platform? No problem. was published on SAS Voices.

10月 272016

Consumers want content 24 hours a day, seven days a week, all around the world. It's a tall order for media & entertainment (M&E) companies and a 180 degree shift from days past. How do they provide enough content to meet demand? Audiences are binge watching over-the-top (OTT) programming, creating […]

Digital transformation = increased expectations for media & entertainment was published on SAS Voices.

10月 182016

In JMP 12, an interactive HTML Profiler was added, as I had previously blogged about. That change mainly updated the existing Flash functionality to HTML5 technology, making it available on mobile devices like an iPad, but it also introduced a few new features. Among these was the option of exporting the Fit Model Least Squares platform report as a whole with an interactive Profiler embedded within it.

After users got to try this tool, the response was overwhelmingly positive. They found it a great way to explore cross-sections of predicted responses across multiple factors with other people who don’t have JMP yet. However, the feedback was that users would like to see Profilers available in other platforms as well.

In JMP 13, three more platforms have embedded Profilers that are available in interactive HTML.


In JMP, you can analyze your data using Neural Networks. I will use the  Diabetes data set from the sample data library to illustrate some of the differences between this platform and Generalized Regression below. Note the curved responses for Age, BMI, and BP as well as the elongated report (only the first five factors out of 10 are shown).


Generalized Regression

Generalized Regression embedded Profilers are supported for export from JMP Pro 13. This example also shows an additional enhancement for Interactive HMTL in JMP 13 that allows you to pick how many plots are displayed in a row when you have a lot of factors. You'd do this in JMP by selecting the red triangle, going to Appearance and selecting Arrange in Rows to provide the number you want before exporting.  This allows you to explore many factors in Interactive HTML with a nice layout (which can be useful on a mobile device with a smaller screen). You can see the same factors analyzed as in the Neural platform above, but more are visible in the same width display due to this feature.


Generalized Linear Model

Generalized Linear Model is the third platform to support interactive HTML embedded Profilers in JMP 13.


In addition to making embedded Profilers in those three platforms available in interactive HTML, JMP 13 includes new features to make exploring your data a little easier. That's what I'll cover in  the following sections.

Adapt Y Axis

In JMP 12, you could explore data outside of the initial range of the numeric factors by typing in a value in the edit box below the curve. But what if this causes the curve to move outside the initial range of the response? You could see the value displayed in red on the Y axis, but no longer see the curve itself. Now there is an option to have the Y axis automatically adapt to show the min and max values of the curve.  Simply click the menu button above the Profiler and check “Adapt Y Axis”.


Formatted Variables

Some data requires analyzing a formatted X factor such as a date, time, or geographic location. In JMP 12, you could click or drag anywhere within the Profiler to change the value, but there was no way to provide a precise value for this type of data.  Now X variables in these formats are displayed as a button that, when clicked, launches a dialog to enter the individual fields of the format.


Apply Mixture

Similarly, in JMP 12, if you tried to precisely set a Profiler with a mixture constraint to a set of values that you knew satisfied the constraint, you couldn’t do it; every time you set one value, the others were altered to satisfy the mixture. In JMP 13, mixture values are applied by clicking an apply button.

For example, the amounts of three ingredients used to make a plastic in the following Profiler must sum to 1 and stay within the ranges shown. The values  0.7, 0.1, and 0.2 sum to 1 exactly. So, by entering these values in the edit boxes and then clicking apply, the Profiler is set to those precise values.


The images shown here as well as a few other examples are available as live interactive HTML files to explore on the web.

JMP offers a wide variety of math functions, special features and powerful algorithms that haven’t all been implemented in HTML, so not every Profiler will come out interactively. If you need to share work with someone who doesn’t have JMP and export your reports to Interactive HTML, we’ve added messages to the log to try to indicate why a particular Profiler has come out as a static image. Armed with this knowledge, we hope you will try your own Profilers and give us feedback on what features and platforms you want to see in the future.

tags: Data Visualization, Interactive HTML, JMP 13, Modeling, Profiler

The post Interactive HTML: Profilers in 3 more platforms in JMP 13 appeared first on JMP Blog.

10月 112016

This is a continuation of a series of blog posts on interactive HTML for Graph Builder reports in JMP 13. Here, I'm discussing support for Points, Box Plots, Heat Maps and Map Shapes. These Graph Builder elements are highlighted in the figure below.


Since this blog post describes interactive web pages output from JMP, images and animations below were captured from a web browser.


Points exist in many graphs in JMP where you can customize the point color, shape, and size, usually by opening a dialog box. Graph Builder’s drag-and-drop interface makes it easy to create colorful graphs with points of all shapes and sizes. The example below using Diamonds Data from the sample data library in JMP sets the following point attributes:

  • Size based on the Table column data
  • Color based on the Depth column data
  • Shape based on the Clarity column data

In addition to these attributes, Price versus Cut and grouping by Carat Weight was employed to understand what influences diamond prices the most. Of course, JMP provides capabilities that specifically target this question, but that’s a topic for another blog post.


This combination of attributes made supporting Graph Builder point plots in Interactive HTML challenging because there are now more ways to determine the size, shape and color of each point. The challenge was increased additionally by the fact that each point in Graph Builder can represent a statistical summary of multiple rows of data.

In the following Interactive HTML example, each point represents diamonds of a given Cut and Clarity. Although the legend is rearranged, the shape and color are still determined by Clarity and Depth respectively. To  accentuate the difference between the diamonds' Table dimensions, a column transform named Relative Table was used in the Size role rather than the raw Table column data. DiamondsPointsMean

Box Plots

The summarized points above may provide too little information and the raw points may be too busy, so how about a compromise using box plots? In this graph, we see the distribution of prices for each Cut, Clarity, and Carat Weight combination. The legend was moved to the bottom and drawn horizontally to match the arrangement of box plots in each group.


Heat Maps

So far, it might be difficult to see what influences diamond prices the most. We’ve only covered three of the four C’s in diamond quality. So, here’s a heat map including all four. Maybe now it’s easier to make some conclusions.


Adding support for heat maps in Graph Builder gave us a bonus outside of Graph Builder: The Uplift graph in the Uplift Platform is now interactive and can display X Factors and X/Y ranges.


Map Shapes

Map shapes can be used in Graph Builder for location-based data, like population data. Grouping can help the viewer focus on one region at a time. With the ‘Show Missing Shapes’ option enabled, the region of interest can be seen in context of the whole country.


Map Shapes can be scaled according to a size variable (Population) while being colored by another variable (Vegetable Consumption).



To see that some of the interactive power of JMP is available in Interactive HTML, it helps to interact with combined graphs. In JMP this can be accomplished with Combined Windows, Application Builder, or Dashboard Builder. Below are some combination examples using the graph types described above.

This example explores Crime data with a Heat Map and geographical Map Shapes.


The following example uses Points, Box Plots, a Heat Map, and a custom Map Shape to explore office temperatures.


One new feature for Points and Map Shapes in Interactive HTML is the ability to display images in tooltips.


Note that these are just animations. You can interact with the Interactive HTML files shown in this blog here:

tags: Data Visualization, Graph Builder, Interactive HTML, JMP 13

The post Interactive HTML: Points, box plots and more for Graph Builder appeared first on JMP Blog.

10月 032016

By now you may have heard that in JMP 13, the most frequently used features of reports created in Graph Builder can be saved as interactive HTML, which can then be viewed using just a web browser.

Getting Graph Builder output to work for the web in JMP 13 involved bringing new features to several graphical elements that had been available in interactive HTML output since JMP 11. Areas and lines can be used to display some of the same information as points but in a different way. Exploring these stacked areas in interactive HTML, you can now see the values along the edge of the area.


The tooltips for lines display the rows that are included in each point along the line as well as information about the values. Graph Builder gives you the ability to customize various attributes of the lines. The example below combines lines using different drawing styles with annotations and the gray reference ranges to create a rich graph.


While the most heavily used graph types and options are exported as interactive HTML, the remaining ones are exported as static images. Contour plots are exported as static images; however, if your data is categorical, Graph Builder produces violin plots, which are exported as interactive HTML. Below you can see the close relationship between the violin plot and another Graph Builder element, the box plot.


What if you want to bin data into categories to explore their distribution? There are a number of ways to do this in Graph Builder. The histogram is available in Interactive HTML in the Distribution platform (as well as options in several other JMP platforms), but now can also be exported to the web after exploring your data in a drag-and-drop manner in Graph Builder in JMP. Below is an example created using Titanic passenger data to examine the distribution of ages.


A mosaic plot is used to examine the relationship between two categorical variables. Cells give informative tooltips regarding the share and number of rows associated with each cell, and cells can be selected with rows being linked to other related charts in the report.


In JMP, you can use Dashboard Builder to create reports with several types of Graph Builder output in the same page -- so people who do not have JMP yet can interactively explore your data. Here, a mosaic plot, bars and histograms are combined to analyze the importance of different goals to schoolchildren.


These are just a few examples of the powerful graphs you can create to explore your data in Graph Builder and share with others using interactive HTML. The graphs shown here as well as a few other examples are available as live interactive HTML files to explore on the web at, but be sure to try your own Graph Builder creations!

tags: Dashboard, Dashboard Builder, Data Visualization, Distribution, Graph Builder, Interactive HTML, JMP 13

The post Interactive HTML: Lines, mosaic plots and more for Graph Builder appeared first on JMP Blog.

9月 282016

“Every morning in Africa, a gazelle wakes up. It knows it must run faster than the fastest lion, or it will be killed. Every morning a lion wakes up. It knows it must outrun the slowest gazelle, or it will starve to death. It doesn't matter whether you are a […]

Our world is flat, but our employees aren’t: How to manage and hire with analytics was published on SAS Voices.

9月 272016

In JMP 11, we built interactive HTML technology into JMP to enable customers to share results. You can publish JMP results to the Web, post them to a corporate intranet or shared drive, or share them with colleagues via e-mail.

In JMP 12, we added support for Bubble Plots, Profilers, and Mobile devices.  Unlike Flash applications, the interactive HTML reports in JMP can run on iPads and similar devices.

In JMP 13, we've added support for reports created with Graph Builder.  The most frequently used features are enabled, for Points, Smoothers, Ellipses, Lines, Bars, Areas, Box Plots, Histograms, Heatmaps, Mosaic Plots, Caption Boxes, and Map Shapes. These Graph Builder elements are highlighted in the figure below.


In addition, we've received a number of feature requests from customers over the years. You know who you are ;-)  So beyond Graph Builder, we've added the following in JMP 13:

  1. Dashboard Support
  2. More Profilers
  3. Reference Ranges
  4. Value Labels
  5. Value Ordering
  6. Pinned Tooltips
  7. Hover Pictures

In this post, I'll give a high-level overview of some of these features.

Graph Builder Bar Charts

Bar charts are among the most frequently used graphs. Graph Builder provides a dozen different styles of bar charts, of which six are supported in interactive HTML.

The example below shows the same data drawn with stacked and side-by-side bars.  For this market share example, the bar sections all sum to 100%, so arguably the stacked style communicates more clearly.

Interactive HTML

Bullet charts provide a highly space-efficient presentation. These charts were developed specifically for use in dashboards. The example below shows a dashboard for a hospital interested in patients' and doctors' wait times and emergency room occupancy.


Range bars are useful for showing two values. In the stock market example below, hover tips display the high and low prices for each date.

Interactive HTML

Graph Builder supports many combinations of layouts for grouping. The example below shows diamond prices vs. carat weights, grouped by cut, in a wrapped layout.  The larger diamonds are more expensive, and the cut also matters. The ideal cut is considered to give the most brilliant sparkle to the diamond, so it generally fetches higher prices.


Bar Charts Outside Graph Builder

Implementing bar charts for Graph Builder gave us a bonus: Bar charts are now also supported in all other JMP reports. In the Partial Least Squares analysis, for example, bar charts interactively display X and Y coordinates.

Interactive HTML

Improved Dashboard Support

Dashboards combine related information in custom layouts for efficient communication. Dashboards are popular on the web, so we've improved support for custom layouts in Interactive HTML. The dashboard below uses a particularly efficient layout with tab controls to show profits per employee for different types of companies.


Besides improving layout, we can support many more kinds of dashboards in JMP 13, because we support many more kinds of graphs. This dashboard of regional air quality combines four separate Graph Builder reports. Along with Bar Charts, Heatmaps, Mosaic Plots and Map Shapes are all new graph types supported in JMP 13. My colleagues John Powell and Josh Markwordt will describe these new graphs in future blog posts.


Interactive Examples

In this blog post, I've shown static images and simple animations, but that is no substitute for interacting with the web pages themselves. All of our examples are available as Interactive HTML pages at

 JMP 13 HTML5 Examples

We built these examples with our colleague Michael Goff's excellent new web report generator, available in JMP 13 under the View menu "Create Web Report."

We hope our work helps you, and we look forward to your comments and suggestions!

tags: Data Visualization, Graph Builder, Interactive HTML, JMP 13

The post Interactive HTML: Graph Builder and more appeared first on JMP Blog.

9月 042016

You might say I love sports. I began swimming at a very early age and participated on swim teams for many years. Gymnastics, volleyball, softball, basketball and even track teams were all part of my life, and I loved playing and competing. So maybe that is why I always love […]

The post Looking at Summer Games data with JMP appeared first on JMP Blog.