4月 032020

Whether you like it or not, Microsoft Excel is still a big hit in the data analysis world. From small to big customers, we still see fit for daily routines such as filtering, generating plots, calculating items on ad-hoc analysis or even running statistical models. Whenever I talk to customers, there is always someone who will either ask: Can this be exported to excel or can we import data from excel?. Recently, other questions started to come up more often: Can we run Python within SAS? How do I allow my team to choose their language of preference? How do I provide an interface that looks like Microsoft Excel, but has SAS functionalities?.

Well… good news is: we can answer YES to all of these questions. With the increase in number of users performing analytics and the number of analytical tools available, for me it was clear that we would end up having lots of disparate processes. For a while this was a problem, but naturally, companies started developing ways to integrate these siloed teams.

In the beginning of last decade, SAS developed SAS Add-in for Microsoft Office. The tool allows customers to run/embed SAS analytic capabilities inside Microsoft Office applications. More recently, SAS released a new version of PROC FCMP allowing users to write Python code and call, if as a function, inside SAS programs.

These advancements provide users the ability to run Python inside Excel. When I say inside, I really mean from within Excel's interface.

Before we jump to how we can do it, you may ask yourself: Why is this relevant to me? If I know SAS, I import the dataset and work with the data in SAS; If I know Python, I open a Jupyter notebook, import the data set and do my thing. Well… you are kind of right, but let me tell you a story.

The use case

Recently I worked with a customer and his business process was like this: I have a team of data scientists that is highly technical and knowledgeable in Python and SAS. Additionally, I have a team of analysts with little Python knowledge, but are always working with Excel to summarize data, create filters, graphs, etc. My teams need to communicate and collaborate. The normal chain of events follows:

  1. the Python team works on the data, and exports the results to Excel
  2. the analytics team picks up the data set, and runs SAS scripts and excel formulas

This is a problem of inefficiency for the customer. Why can't the data scientist pass his or her code to the analyst to execute it on the same project without having to wait on the Python specialist to run the code?

I know this sounds overly complicated, but as my SAS colleague Mike Zizzi concludes in his post SAS or Python? Why not use both? Using Python functions inside SAS programs, at the end of the day what matters is that you get your work done. No matter which language, software or IDE you are using. I highly recommend Mike's article if you want a deep dive on what PROC FCMP has to offer.

The process

Let's walk through a data scoring scenario similar to my customer's story. Imagine I am a SAS programmer using Excel to explore data. I am also part of a team that uses Python, creating scoring data code using analytical models developed in Python. My job is to score and analyze the data on Excel and pass the results to the service representative, so they can forward the response to the customer.

Importing data

The data set we'll work with in this example will help me analyze which customers are more likely to default on a loan. The data and all code used in this article are in the associated GitHub repository. The data dictionary for the data set is located here. First, I open the data set as seen on Sheet1 below in Excel.

Upload data to SAS

Before we jump to the coding part with SAS and Python, I need to send the data to SAS. We'll use the SAS add-in, in Excel to send data to the local server. I cover the steps in detail below.

I start by selecting the cells I want to upload to the library.

Next, I move to the SAS tab and select the Copy to SAS Server task.

A popup shows up where I confirm the selected cells.

After I click OK, I configure column, table, naming and location options.

SAS uploads the table to the requested library. Additionally, a new worksheet with the library.table name displays the results. As you can see on the image below, the sheet created follows the name WORK.IMPORTED_DATA we setup on the previous step. This represents the table in the SAS library memory. Notice, however, we are still working in Excel.

The next step is to incorporate the code sent from my teammate.

The Python code

The code our colleague sent is pure Python. I don't necessarily have to understand the code details, just what it does. The Python code below imports and scores a model and returns a score. Note: if you're attempting this in your own environment, make sure to update the hmeq_model.sav file location in the # Import model pickle file section.

	"Output: scored"
	# Imporing libraries
	import pandas as pd
	from sklearn.preprocessing import OneHotEncoder
	from sklearn.compose import ColumnTransformer
	from sklearn.externals import joblib
	# Create pandas dataframe with input vars
	X = dataset.values
	# Import model pickle file
	loaded_model = joblib.load("C://assets/hmeq_model.sav")
	# Score the input dataframe and get 0 or 1 
	scored = int(loaded_model.predict_proba(X)[0,1])
	# Return scored dataframe
	return scored

My SAS code calls this Python code from a SAS function defined in the next section.

The SAS code

Turning back to Excel, in the SAS Add-in side of the screen, I click on Programs. This displays a code editor, and as explained on this video, is like any other SAS code editor.

We will use this code editor to write, run and view results from our code.

The code below defines a FCMP function called Score_Python, that imports the Python script from my colleague and calls it from a SAS datastep. The output table, HMEQ_SCORED, is saved on the WORK library in SAS. Note: if you're attempting this in your own environment, make sure to update the file location in the /* Getting Python file */ section.

proc fcmp outlib=work.fcmp.pyfuncs;
/* Defining FCMP function */
proc fcmp outlib=work.fcmp.pyfuncs;
	/* Defining name and arguments of the Python function to be called */
		/* Python object */
		declare object py(python);
		/* Getting Python file  */
		rc = py.infile("C:\assets\");
		/* Send code to Python interpreter */
		rc = py.publish();
		/* Call python function with arguments */
		/* Pass Python results to SAS variable */
		MyFCMPResult = py.results["scored"];
options cmplib=work.fcmp;
/* Calling FCMP function from data step */
data work.hmeq_scored;
	set work._excelexport;
	put scored_bad=;


I place my code in the editor.

We're now ready to run the code. Select the 'Running man' icon in the editor.

The output

The result represents the outcome of the Python model scoring code. Once the code completes the WORK.HMEQ_SCORED worksheet updates with a new column, scored_bad.

The binary value represents if the customer is likely (a '1') or unlikely (a '0') to default on his or her loan. I could now use any built in Excel features to filter or further analyze the data. For instance, I could filter all the customers likely to default on their loans and pass a report on to the customer management team.

Final thoughts

In this article we've explored how collaboration between teams with different skills can streamline processes for efficient data analysis. Each team focuses on what they're good at and all of the work is organized and completed in one place. It is a win-win for everyone.

Related resources

Extending Excel with Python and SAS Viya was published on SAS Users.

3月 182020

Let’s be honest, there is a lot of SAS content available on the web. Sometimes it gets difficult to navigate through everything to find what you need, especially if you are looking for complimentary resources.

Training budgets can be limited or already used for the year, but you’re still interested in learning a new SAS product or diving deeper into a specific subject to facilitate any current projects you are working on. Or you’re a real over-achiever (go, you!) and you’re looking to expand your personal SAS skills outside of your day-to-day work.

You start asking, “How do I find what I need?”

Don’t worry, SAS has you covered!

SAS learn & support

Let’s start with a favorite resource (in a Customer Success Manager’s opinion) – SAS’ learn and support pages. SAS recently released updated learn and support pages for SAS products. These pages provide a great overview of SAS’ product offerings, and they provide resources for those who are new to SAS or those looking to expand their knowledge. The learn and support pages cover the most current product release, information on getting started, tutorials, training courses, books, and documentation for current and past releases.

Not sure how to locate the learn and support page for the SAS product you are using? Search the SAS Product Support A to Z page and select the product of your choice.

SAS documentation

Browsing the web for resources is a great way to find answers to your SAS questions. But as mentioned previously, it can sometimes get tricky to find what you are looking for.

A great place to start your search is on the SAS documentation site. You can use the search bar to enter what you are looking for, or browse by products, titles or system requirements.

What’s new in SAS

You may have heard the saying, “There are three ways to do anything in SAS.” (Or four, or five or six!) Which raises the question, “How do I know what I’m doing is the most efficient?”

One way to stay on top of the most efficient way to do things is to stay current with your SAS knowledge. Knowing what’s new in SAS helps users know and understand what new features and enhancements are available. When a SAS product release occurs, SAS provides documentation on what’s new.

To know what’s new in the SAS release you’re using, check out the What’s New documentation. The documentation is broken into two parts: SAS 9.4 and SAS Viya 3.5. You can use the ‘Version’ tab on the left-hand side of the page to select the version currently installed at your organization.

If you are not sure what version you are running, you can run PROC PRODUCT_STATUS. This PROC will return what version numbers are running for the SAS products installed.

proc product_status;

Another great resource to stay on top of what’s new from SAS is to check out SAS webinars. SAS offers live and on-demand webinars hosted by SAS experts. There are topics for every level of SAS user and every level of an organization, from SAS programmers to executives.

To attend a live webinar, select the webinar of your choice, register to attend, and you will be sent an email with the calendar invite.

If you’re interested in checking out an on-demand webinar, you can search by topic or industry to find a topic that fits what you’re looking for.

Looking for a webinar that focuses on a SAS tool? Check out the SAS Ask the Expert webinars. These are one-hour live and on-demand webinars for SAS users and administrators. The sessions cover a wide range of topics from what’s new in new releases of SAS products, to overviews on getting started, to tips and tricks that help take your SAS knowledge to the next level.

With SAS’ extensive catalog of webinars to choose from you will be a SAS pro in no time!

SAS training and education

Did you know that SAS offers free e-learning for some of our training courses? These courses are self-paced and cover a wide range of topics. With 180 days of access to these courses, it allows you to work through them at your own speed. It’s also very easy to get started!

Step 1: Select a course from the course library

Step 2: Sign into your SAS profile or create one

Step 3: Activate your product(s) and review the License Agreement

Step 4: Work through the course lessons

Step 5: Complete the course and receive your SAS digital Learn Badge and Course Completion Certificate

Leverage expertise worldwide

SAS recently released SAS Analytics Explorer. This is an interactive way to connect with other SAS professionals, expand your SAS knowledge, and access private SAS events and resource all while earning points that can be exchanged for rewards.

Are you up for the challenge? No really, are you? The SAS Analytics Explorer has fun and educational challenges that allow you to showcase your SAS skills to climb the ranks in the network. Show off your SAS talent and get some cool rewards while you’re at it!

Interested in joining? Fill out the form on the bottom of the SAS Analytics Explorer page to request an invitation.

Don’t forget about the SAS Communities! Connect with other SAS professionals and experts to ask questions, assist other SAS professionals with their questions, connect with users, and see what’s going on at SAS.

You can also connect with SAS on our website using the chat feature. We love SAS users, and we are here to help you!

Tips and resources for making the most of your SAS experience was published on SAS Users.

3月 162020

As a long-time SAS 9 programmer, I typically accomplish my data preparation tasks through some combination of the DATA Step, Proc SQL, Proc Transpose and some housekeeping procs like Proc Contents and Proc Datasets. With the introduction of SAS Viya, SAS released a new scripting language called CASL – a language that interacts with SAS Cloud Analytics Services (CAS).

CASL statements include actions, logically organized into action sets based on common functionality. For example, the Table action set allows you to load a table in CAS, view table metadata, change table metadata such as drop or rename a column, fetch (print) sample rows, save or drop a table from CAS, among other things. Steven Sober provides a great overview of CASL in his 2019 SAS Global Forum paper.

Learning CASL is a good idea assuming you want to leverage the power of CAS, because CASL is the language of CAS. While you can continue to use Viya-enabled procs for many of your data processing needs, certain new functionality is only available through CASL. CAS actions also provide a more granular access to options which otherwise may not be available as procedure options. But old habits die hard, and for a while I found myself bouncing between SAS 9.4 and CASL. I'd pull the data down from CAS just to get it to process in the SAS Programming Runtime Environment (SPRE) because it took less effort than figuring out how to get it done properly in CAS.

Then I started a project with a seriously large data set and quickly hit the limit on how much data I could pull down to process in SPRE. And although I could adjust the DATALIMIT option to retrieve more data than the default limit, I was wasting time and server resources unnecessarily moving the data between CAS and SPRE. All this, just so I could process the data “old school.”

I decided to challenge myself to do ALL my data preparation in CASL. I love a good challenge! I started collecting various useful CASL code snippets. In this post, I am sharing the tidbits I’ve accumulated, along with some commentary. Note, you can execute CAS actions from multiple clients, including SAS, Python, R, Lua and Java. Since my objective was to transition from traditional SAS code to CASL, I’ll focus solely on CAS actions from the SAS client perspective. While I used SAS Viya 3.5 for this work, most of the code snippets should work on prior versions as well.

The sections below cover: how to submit CASL code; loading, saving, dropping and deleting data; exploring data; table metadata management; and data transformation. Feel free to jump ahead to any section of interest.

How do you submit CASL code?

You use PROC CAS to submit CASL code from a SAS client. For example:

proc cas;
   <cas action 1>;
   <cas action 2>;

Similarly to other interactive procs that use run-group processing, separate CAS actions by run; statements. For example:

proc cas;
   <cas action 1>;
   <cas action 2>;

In fact, you can have the entire data preparation and analysis pipeline wrapped inside a single PROC CAS, passing data and results in the form of CASL variables from one action to the next. It can really be quite elegant.

Moving Data Using PROC CAS

Loading SASHDAT data in CAS

Your data must be in the SASHDAT format for CAS to process it. To load a SASHDAT table into CAS, use the table.loadtable CAS action. The code below assumes your SASHDAT table is saved to a directory on disk associated with your current active caslib, and you are loading it into the same caslib. (This usually occurs when you already performed the conversion to SASHDAT format, but the data has been unloaded. If you are just starting out and are wondering how to get your data into the SASHDAT format in the first place, the next session covers it, so keep reading.)

proc cas; 
     table.loadtable / path="TABLE_NAME.sashdat" casOut="TABLE_NAME"; 
     table.promote /name="TABLE_NAME" drop=true; 

The table.promote action elevates your newly loaded CAS table to global scope, making it available to other CAS sessions, including any additional sessions you start, or to other users assuming they have the right privileges. I can’t tell you how many times I forgot to promote my data, only to find that my hard-earned output table disappeared because I took a longer coffee break than expected! Don’t forget to promote or save off your data (or both, to be safe).

If you are loading from a directory other than the one associated with your active caslib, modify the path= statement to include the relative path to the source directory – relative to your active caslib. If you are looking to load to a different caslib, modify the casOut= statement by placing the output table name and library in curly brackets. For example:

proc cas;
    table.loadtable / path="TABLE_NAME.sashdat" casOut={name="TABLE_NAME" caslib="CASLIB2"};
    table.promote /name="TABLE_NAME" drop=true;

You can also place a promote=true option inside the casOut= curly brackets instead of calling the table.promote action, like so:

proc cas;
    table.loadtable / path="TABLE_NAME.sashdat" 
                      casOut={name="TABLE_NAME" caslib="CASLIB2" promote=true};

Curly brackets are ubiquitous in CASL (and quite unusual for SAS 9.4). If you take away one thing from this post, make it “watch your curly brackets.”

Loading SAS7BDAT, delimited data, and other file formats in CAS

If you have a SAS7BDAT file already on disk, load it in CAS with this code:

proc cas;
    table.loadtable /path="TABLE_NAME.sas7bdat" casout="TABLE_NAME" 

Other file formats load similarly – just use the corresponding filetype= option to indicate the type of data you are loading, such as CSV, Excel, Document (.docx, .pdf, etc.), Image, Video, etc. The impressive list of supported file types is available here.

proc cas;
    table.loadtable / path="TABLE_NAME.csv" casout="TABLE_NAME" 

You can include additional parameters inside the importOptions= curly brackets, which differ by the file type. If you don’t need any additional parameters, use the filetype=”auto” and let CAS determine the best way to load the file.

When loading a table in SAS7BDAT, delimited or some other format, the table.loadtable action automatically converts your data to SASHDAT format.

Loading data in CAS conditionally

Imagine you are building a script to load data conditionally – only if it’s not already loaded. This is handy if you have a reason to believe the data might already be in CAS. To check if the data exists in CAS and load conditionally, you can leverage the table.tableExists action in combination with if-then-else logic. For example:

proc cas;
    table.tableExists result =r / name="TABLE_NAME";
    if r=0  then do;
        table.loadtable / path="TABLE_NAME.sashdat" casOut={name="TABLE_NAME"};
        table.promote /name="YOUR_TABLE_NAME" drop=true;
    else print("Table already loaded");

Notice that the result=r syntax captures the result code from the tableExists action, which is evaluated before the loadtable and promote actions are executed. If the table is already loaded in CAS, “Table already loaded” is printed to the log. Otherwise, the loadtable and promote actions are executed.

The ability to output CAS action results to a CASL variable (such as result=r in this example) is an extremely powerful feature of CASL. I include another example of this further down, but you can learn more about this functionality from documentation or this handy blog post.

Saving your CAS data

Let’s pretend you’ve loaded your data, transformed it, and promoted it to global scope. You or your colleagues can access it from other CAS sessions. You finished your data preparation, right? Wrong. As the header of this section suggests, you also need to save your prepared CAS data. Why? Because up to this point, your processed and promoted data exists only in memory. You will lose your work if your SAS administrator reboots the server or restarts the CAS controller. If you need to quickly reload prepared data, you must back it up to a caslib’s data source. See the CAS data lifecycle for more details.

To save off CAS data, naturally, you use the action. For example:

proc cas; / table="TABLE_NAME" name="TABLE_NAME.sashdat" replace=true;

In this example, you save off the CAS table to disk as a SASHDAT file, defaulting to the location associated with your active caslib. You can modify the parameters to save or export the data to an alternative data storage solution with full control over the file format (including but not limited to such popular options as HDFS, Oracle, SQL Server, Salesforce, Snowflake and Teradata), compression, partitioning and other options.

Dropping and deleting data

To drop a table from CAS, execute a table.droptable action. For example:

proc cas;
    table.droptable / name="TABLE_NAME" quiet=true;

The quiet=true option prevents CAS from generating an error if the table does not exist in CAS. Dropping a table deletes it from memory. It’s a good practice to drop tables you no longer need, particularly the one you have promoted. Local-scope tables disappear on their own when the session expires, whereas global tables will stay in memory until they are unloaded.

Dropping a table does not delete the underlying source data. To delete the source of a CAS table, use the table.deleteSource action. For example:

proc cas;
    table.deletesource / source="TABLE_NAME.sashdat" quiet=true;

Exploring Data Using PROC CAS

After taking a close look at moving the data using PROC CAS, let’s look at some useful ways to start exploring and manipulating CAS data.

Fetching sample data

When preparing data, I find it useful to look at sample data. The table.fetch action is conceptually similar to PROC PRINT and, by default, outputs the first 20 rows of a CAS table:

proc cas;
table.fetch / table="Table_Name";

You can modify the table.fetch options to control which observations and variables to display and how to display them. For example:

proc cas;
table.fetch / table={name="TABLE_NAME" where="VAR1 in ('value1','value2')"},              /*1*/
	      orderby={{name="VAR1"},                                                     /*2*/
                             {name="VAR2", order="descending"}
	     fetchvars={{name="VAR1", label="Variable 1"},                                /*3*/
	                     {name="VAR2", label="Variable 2"}, 
 		             {name="VAR3", label="Variable 3", format=comma12.1}
	     to=50,                                                                       /*4*/
	     index=false;							          /*5*/

In the code snippet above:

  • #1 – where= statement limits the records to those meeting the where criteria.
  • #2 – orderby= option defines the sort order. Ascending is the default and is not required. If sorting by more than one variable, put them in a list inside curly brackets, as shown in this example. If a list item has a subparameter (such as order= here), encase each item in curly brackets.
  • #3 – fetchvars= option defines the variables to print as well as their display labels and formats. If you select more than one variable, put them in a list inside curly brackets, as shown here. And again, if a list item includes a subparmeter, then enclose each list item in curly brackets.
  • #4 – to= option defines the number of rows to print.
  • #5 – index= false option deactivates the index column in the output (the default is index=true). This is similar to the noobs option in PROC PRINT.

As mentioned earlier, make sure to watch your curly brackets!

Descriptive statistics and variable distributions

The next step in data exploration is looking at descriptive statistics and variable distributions. I would need a separate blog post to cover this in detail, so I only touch upon a few of the many useful CAS actions.

To look at statistics for numeric variables, use the simple.summary action, which computes standard descriptive statistics, such as minimum, maximum, mean, standard deviation, number missing, and so on. For example:

proc cas;
    simple.summary / table="TABLE_NAME";

Among its other features, the simple.summary action allows analysis by one or more group-by variables, as well as define the list of desired descriptive statistics. For example:

proc cas;
simple.summary / table={name="TABLE_NAME", groupBy="VAR1", vars={"NUMVAR1","NUMVAR2”}},
                 subSet={"MAX", "MIN", "MEAN", "NMISS"};

Another useful action is simple.topK, which selects the top K and bottom K values for variables in a data set, based on a user-specified ranking order. The example below returns the top 5 and bottom 5 values for two variables based on their frequency:

proc cas;
simple.topk / table="TABLE_NAME" 

Simple is a rich action set with heaps of useful options covered in the documentation.

You may be wondering – what about crosstabs and frequency tables? The simple action set includes freq and crosstab actions. In addition, the action closely imitating the functionality of the beloved PROC FREQ is freqTab.freqTab. For example, the code snippet below creates frequency tables for VAR1, VAR2 and a crosstab of the two.

proc cas;
freqtab.freqtab / table="TABLE_NAME"

Managing CAS Table Variables

Changing table metadata

One of the basic tasks after exploring your data is changing table metadata, such as dropping unnecessary variables, renaming tables and columns, and changing variable formats and labels. The table.altertable action helps you with these housekeeping tasks. For example, the code snippet below renames the table, drops two variables and renames and changes labels for two variables:

proc cas;
    table.altertable / table="TABLE_NAME" rename="ANALYTIC_TABLE"
                       columns={{name="VAR3" rename="ROW_ID" label="Row ID"},
                                {name="VAR4" rename="TARGET" label="Outcome Variable"}

Outputting variable list to a data set

Another useful trick I frequently use is extracting table columns as a SAS data set. Having a list of variables as values in a data set makes it easy to build data-driven scripts leveraging macro programming. The code snippet below provides an example. Here we encounter another example of capturing action result as a CASL variable and using it in further processing – I can’t stress enough how helpful this is!

proc cas;
    table.columninfo r=collinfo / table={name="TABLE_NAME"};       /*1*/
    collist=collinfo["ColumnInfo"];                                /*2*/
    saveresult collist casout="collist";                           /*3*/

In the snippet above:

  • #1 - the columninfo action collects column information. The action result is passed to a CASL variable collinfo. Notice, instead of writing out result=, I am using an alias r =.
  • #2 - the portion of the a CASL variable collinfo containing column data is extracted into another CASL variable collist.
  • #3 - the saveresult statement sends the data to a CAS table collist. If you want to send the results to a SAS7BDAT data set, replace casout= with dataout=, and provide the library.table_name information.

Transforming the Data

Lastly, let’s look at some ways to use CAS actions to transform your data. Proc SQL and DATA step are the two swiss-army knives in SAS 9 developers’ toolkit that take care of 90% of the data prep. The good news is you can execute both DATA Step and SQL directly from PROC CAS. In addition, call the transpose action to transpose your data.

Executing DATA Step code

The dataStep.runCode action enables you to run DATA step code directly inside PROC CAS. You must enclose your DATA step code in quotation marks after the code= statement. For example:

proc cas;
    dataStep.runCode /
        data table_name;
        set table_name;

Running DATA step code in CAS allows access to sophisticated group-by processing and the use of such popular programming techniques as first- and last-dot. Refer to the documentation for important nuances related to processing in a distributed, multi-threaded environment of CAS.

Executing FedSQL

To run SQL in CASL, use the fedSQL.execDirect action. Enclose the SQL query in quotation marks following the query= statement. Optionally, you can use the casout= statement to save the results to a CAS table. For example:

proc cas;
          select  *
          from TABLE1 a  inner join TABLE2 b
          on a.VAR1 = b.VAR1
    casout={name="TABLE3", replace=True};

Similarly to DATA step, be aware of the many nuances when executing SQL in CAS via FedSQL. Brian Kinnebrew provides an excellent overview of FedSQL in his SAS Communities article, and the documentation has up-to-date details on the supported functionality.

Transposing data

Transposing data in PROC CAS is a breeze. The example below uses transpose.transpose action to restructure rows into columns.

proc cas;
    transpose.transpose /
          table={name="TABLE_NAME", groupby={"VAR1"}}
    casout={name="TRANSPOSED" replace=true};

You can transpose multiple variables in the same transpose action. Simply place additional variables inside the curly brackets following transpose=, in quotes, separated by a comma.


PROC CAS is a wrapper procedure enabling you to leverage SAS’ new programming language - CASL. CASL enables you to submit CAS actions directly to SAS Cloud Analytic Services engine from a SAS client. This post provided examples of loading, managing, exploring and transforming your data through CAS actions. Certain new functionality in CAS is only available through CAS actions, so getting comfortable with CASL makes sense. Fear not, and let the curly brackets guide the way 😊.


I would like to thank Brian Kinnebrew for his thoughtful review and generous help on my journey learning CASL.

Challenge accepted: Learning data prep in CASL was published on SAS Users.

12月 122019

Bringing the power of SAS to your Python scripts can be a game changer. An easy way to do that is by using SASPy, a Python interface to SAS allowing Python developers to use SAS® procedures within Python. However, not all SAS procedures are included in the SASPy library. So, what do you do if you want to use those excluded procedures? Easy! The SASPy library contains functionality enabling you to add SAS procedures to the SASPy library. In this post, I'll explain the process.

The basics for adding procedures are covered in the Contributing new methods section in the SASPy documentation. To further assist you, this post expands upon the steps, providing step-by-step details for adding the STDIZE procedure to SASPy. For a hands-on application of the use case refer the blog post Machine Learning with SASPy: Exploring and Preparing your data - Part 3.

This is your chance to contribute to the project! Whereas, you can choose to follow the steps below as a one-off solution, you also have the choice to share your work and incorporate it in the SASPy repository.


Before you add a procedure to SASPy, you need to perform these prerequisite steps:

  1. Identify the SAS product associated with the procedure you want to add, e.g. SAS/STAT, SAS/ETS, SAS Enterprise Miner, etc.
  2. Locate the SASPy file (for example,,, and so on) corresponding to the product from step 1.
  3. Ensure you have a current license for the SAS product in question.

Adding a SAS procedure to SASPy

SASPy utilizes Python Decorators to generate the code for adding SAS procedures. Roughly, the process is:

  1. define the procedure
  2. generate the code to add
  3. add the code to the proper SASPy file
  4. (optional)create a pull request to add the procedure to the SASPy repository

Below we'll walk through each step in detail.

Create a set of valid statements

Start a new python session with Jupyter and create a list of valid arguments for the chosen procedure. You determine the arguments for the procedure by searching for your procedure in the appropriate SAS documentation. For example, the PROC STDIZE arguments are documented in the SAS/STAT® 15.1 User's Guide, in the The STDIZE Procedure section, with the contents:

The STDIZE procedure


For example, I submitted the following command to create a set of valid arguments for PROC STDIZE:

lset = {'STDIZE', 'BY', 'FREQ', 'LOCATION', 'SCALE', 'VAR', 'WEIGHT'}

Call the doc_convert method

The doc_convert method takes two arguments: a list of valid statements (method_stmt) and the procedure name (stdize).

import saspy
print(saspy.sasdecorator.procDecorator.doc_convert(lset, 'STDIZE')['method_stmt'])
print(saspy.sasdecorator.procDecorator.doc_convert(lset, 'STDIZE')['markup_stmt'])

The command generates the method call and the docstring markup like the following:

def STDIZE(self, data: [SASdata', str] = None,
   by: [str, list] = None,
   location: str = None,
   scale: str = None,
   stdize: str = None,
   var: str = None,
   weight: str = None,
   procopts: str = None,
   stmtpassthrough: str = None,
   **kwargs: dict) -> 'SASresults':
   Python method to call the STDIZE procedure.
   Documentation link:
   :param data: SASdata object or string. This parameter is required.
   :parm by: The by variable can be a string or list type.
   :parm freq: The freq variable can only be a string type.
   :parm location: The location variable can only be a string type.
   :parm scale: The scale variable can only be a string type.
   :parm stdize: The stdize variable can be a string type.
   :parm var: The var variable can only be a string type.
   :parm weight: The weight variable can be a string type.
   :parm procopts: The procopts variable is a generic option avaiable for advanced use It can only be a string type.
   :parm stmtpassthrough: The stmtpassthrough variable is a generic option available for advanced use. It can only be a string type.
   :return: SAS Result Object

Update SASPy product file

We'll take the output and add it to the appropriate product file ( in this case). When you open this file, be sure to open it with administrative privileges so you can save the changes. Prior to adding the code to the product file, perform the following tasks:

  1. add @procDecorator.proc_decorator({}) before the function definition
  2. add the proper documentation link from the SAS Programming Documentation site
  3. add triple quotes ("""") to comment out the second section of code
  4. include any additional details others might find helpful

The following output shows the final code to add to the file:

def STDIZE(self, data: [SASdata', str] = None,
   by: [str, list] = None,
   location: str = None,
   scale: str = None,
   stdize: str = None,
   var: str = None,
   weight: str = None,
   procopts: str = None,
   stmtpassthrough: str = None,
   **kwargs: dict) -> 'SASresults':
   Python method to call the STDIZE procedure.
   Documentation link:
   :param data: SASdata object or string. This parameter is required.
   :parm by: The by variable can be a string or list type.
   :parm freq: The freq variable can only be a string type.
   :parm location: The location variable can only be a string type.
   :parm scale: The scale variable can only be a string type.
   :parm stdize: The stdize variable can be a string type.
   :parm var: The var variable can only be a string type.
   :parm weight: The weight variable can be a string type.
   :parm procopts: The procopts variable is a generic option avaiable for advanced use It can only be a string type.
   :parm stmtpassthrough: The stmtpassthrough variable is a generic option available for advanced use. It can only be a string type.
   :return: SAS Result Object

Update sasdecorator file with the new method

Alter the file by adding stdize in the code on line 29, as shown below.

if proc in ['hplogistic', 'hpreg', 'stdize']:

Important: The update to the sasdecorator file is only a requirement when you add a procedure with no plot options. The library assumes all procedures produce plots. However, PROC STDIZE does not include them. So, you should perform this step ONLY when your procedure does not include plot options. This will more than likely change in a future release, so please follow the Github page for any updates.

Document a test for your function

Make sure you write at least one test for the procedure. Then, add the test to the appropriate testing file.


Congratulations! All done. You now have the knowledge to add even more procedures in the future.

After you add your procedure, I highly recommend you contribute your procedure to the SASPy GitHub library. To contribute, follow the outlined instructions on the Contributing Rules GitHub page.

Adding SAS® procedures to the SASPy interface to Python was published on SAS Users.

12月 042019

Site relaunches with improved content, organization and navigation.

In 2016, a cross-divisional SAS team created Their mission: Build a bridge between SAS (and our software) and open source developers.

The initial effort made available basic information about SAS® Viya® and integration with open source technologies. In June 2018, the Developer Advocate role was created to build on that foundation. Collaborating with many of you, the SAS Communities team has improved the site by clarifying its scope and updating it consistently with helpful content.

Design is an iterative process. One idea often builds on another.

-- businessman Mark Parker

The team is happy to report that recently relaunched, with marked improvements in content, organization and navigation. Please check it out and share with others.

New overview page on

The developer experience

The developer experience goes beyond the portal. The Q&A below provides more perspective and background.

What is the developer experience?

Think of the developer experience (DX) as equivalent to the user experience (UX), only the developer interacts with the software through code, not points and clicks. Developers expect and require an easy interface to software code, good documentation, support resources and open communication. All this interaction occurs on the developer portal.

What is a developer portal?

The white paper Developer Portal Components captures the key elements of a developer portal. Without going into detail, the portal must contain (or link to) these resources: an overview page, onboarding pages, guides, API reference, forums and support, and software development kits (SDKs). In conjunction with the Developers Community, the site’s relaunch includes most of these items.

Who are these developers?

Many developers fit somewhere in these categories:

  • Data scientists and analysts who code in open source languages (mainly Python and R in this case).
  • Web application developers who create apps that require data and processing from SAS.
  • IT service admins who manage customer environments.

All need to interact with SAS but may not have written SAS code. We want this population to benefit from our software.

What is open source and how is SAS involved?

Simply put, open source software is just what the name implies: the source code is open to all. Many of the programs in use every day are based on open source technologies: operating systems, programming languages, web browsers and servers, etc. Leveraging open source technologies and integrating them with commercial software is a popular industry trend today. SAS is keeping up with the market by providing tools that allow open source developers to interact with SAS software.

What is an API?

All communications between open source and SAS are possible through APIs, or application programming interfaces. APIs allow software systems to communicate with one another. Software companies expose their APIs so developers can incorporate functionality and send or request data from the software.

Why does SAS care about APIs?

APIs allow the use of SAS analytics outside of SAS software. By allowing developers to communicate with SAS through APIs, customer applications easily incorporate SAS functions. SAS has created various libraries to aid in open source integration. These tools allow developers to code in the language of their choice, yet still interface with SAS. Most of these tools exist on or on the REST API guides page.

A use case for SAS APIs

A classic use of SAS APIs is for a loan default application. A bank creates a model in SAS that determines the likelihood of a customer defaulting on a loan based on multiple factors. The bank also builds an application where a bank representative enters the information for a new potential customer. The bank application code uses APIs to communicate this information to the SAS model and return a credit decision.

What is a developer advocate?

A developer advocate is someone who helps developers succeed with a platform or technology. Their role is to act as a bridge between the engineering team and the developer community. At SAS, the developer advocate fields questions and comments on the Developers Community and works with R&D to provide answers. The administration of also falls under the responsibility of the developer advocate.

We’re not done

The site will continue to evolve, with additions of other SAS products and offerenings, and other initiatives. Check back often to see what’s new.
Now that you are an open source and SAS expert, please check out the new We encourage feedback and suggestions for content. Leave comments and questions on the site or contact Joe Furbee: 2.0: More than just a pretty interface was published on SAS Users.

10月 312019

Buy my costume, Georgie!

While growing up in the 80's, I watched The Golden Girls on TV with my Grandma Betty. Now, when my sister visits, we binge watch reruns on TV Land. I was excited when I saw for this Halloween, you could buy Golden Girls costumes! Too bad they sold out right away, making them one this year's most popular costumes.

For the record, I wasn't planning to dress up tonight as a Golden Girl, but the news got me to thinking how Halloween costumes have changed over the years. What was popular when? Hence, this post. I explain how to use SAS REST APIs to append a table containing historic costume data with this year's most popular costumes (including the Golden Girls and Pennywise from It). While looking at costume data in this example, consider the append steps as a template to translate any table needing updates in SAS Viya, using REST APIs.

The data

There I am, in the middle

I created a data set containing the most popular Halloween costumes from the last 50 years (1968-2018). I compiled the data from several sources who couldn't seem to agree on the best-selling costume for a given year, so I combined the lists. Many years have two entries. The data here isn't as important as the append table procedure. What fun to review the costumes list! It was not hard to tell in what year certain movies (and their sequels) were released. Only one costume I wore made the list – my 1979 Ace Frehley outfit!

The process

The procedures in this example run on SAS Viya, utilizing the Cloud Analytics Services (CAS) REST APIs. CAS REST APIs use CAS actions to perform statistical methods across a variety of SAS products. You can learn more about CAS REST APIs and CAS Actions in the Using SAS Cloud Analytics Service REST APIs to run CAS Actions post or on

Below, I'll detail each REST call along with sample code. I originally used Postman to organize my calls. This allowed me to utilize pre and post-call scripting to handle responses and create variables. You can find the entire Postman collection here on GitHub. For ease-of-display purposes in this post, I'll use equivalent cURL commands.


I registered my client, obtained access token, and added it as an environment variable ACCESSTOKEN. For more information on registering a client or getting an access token, see my earlier post Authentication to SAS Viya: a couple of approaches.

Create a CAS session

Before running any CAS actions, we need to establish a connection to the SAS Viya server.

curl -X POST https://sasserver:8777/cas/sessions \
  -H 'Authorization: Bearer $ACCESSTOKEN' \
  -H 'Content-Type: application/'

The result of this call is a session id in the form of a089ce2b-8116-7a40-b3e3-6e39b7b5566d. This will be used in all subsequent REST calls. You could easily create another variable for further use. In the examples below I substitute the actual session id with <session-id>. You will need to substitute this place holder when attempting the steps on your own.

Create a global Caslib HALLOWEEN

Data in CAS is stored in a Caslib. In the step below, I create a Caslib called HALLOWEEN and link it to a physical server path (/home/sasdemo/halloween), where the table is stored.

curl -X POST https://sasserver:8777/cas/sessions/<session-id>/actions/table.addCaslib \
  -H 'Authorization: Bearer $ACCESSTOKEN' \
  -H 'Content-Type: application/json' \
  -d {"name":"HALLOWEEN","path":"/home/sasdemo/halloween","description":"HALLOWEEN","subDirectories":"false","permission":"PUBLICWRITE","session":"false","dataSource":{"srcType":"path"},"createDirectory":"true","hidden":"false","transient":"false"}

Note that I created the directory ~/halloween and set permissions as needed. Further, since the Caslib is global, other users have access to the data. This step (and the next step) are one time requests. If you were to repeat this process you would not need to create the Caslib nor upload the data.

Copy data set costumesByYear into HALLOWEEN's path

Now that we have a Caslib and a path, we load the data table to the server. In this instance, I copy the costumesByYear.xlsx file into /home/sasdemo/halloween. There are multiple ways to upload data to the server. You can read more about the various methods in the SAS documentation.

Create a temporary Caslib TEMP

While our data lives in the HALLOWEEN Caslib, we want to create a temporary Caslib to run the append step. We will then save the appended table back into HALLOWEEN. The following code creates a new Caslib called TEMP.

curl -X POST https://sasserver:8777/cas/sessions/<session-id>/actions/table.addCaslib \
  -H 'Authorization: Bearer $ACCESSTOKEN' \
  -H 'Content-Type: application/json' \
  -d {"name":"TEMP","path":"/home/sasdemo/temp","description":"TEMP","subDirectories":"false","permission":"PUBLICWRITE","session":"false","dataSource":{"srcType":"path"},"createDirectory":"true","hidden":"false","transient":"false"}

Now we're ready to load the data into memory and append the table.

Load costumesByYear into memory

First, we load costumesByYear into memory in the TEMP Caslib.

curl -X POST https://sasserver:8777/cas/sessions/<session-id>/actions/table.loadTable
  -H 'Authorization: Bearer $ACCESSTOKEN' \
  -H 'Content-Type: application/json' \
  -d {"path":"costumesByYear.xlsx","caslib":"HALLOWEEN","importOptions":{"fileType":"EXCEL"},"casOut":{"caslib":"TEMP","name":"costumesByYear","promote":"true"}}

Create a temporary table data2019 with containing append data

Next, we create a new table called data2019 with costume data for 2019 in TEMP.

curl -X PUT https://sasserver:8777/cas/sessions/<session-id>/actions/upload
  -H 'Authorization: Bearer $ACCESSTOKEN' \
  -H 'Content-Type: text/plain' \
  -H 'JSON-Parameters: {"casOut":{"caslib":"TEMP","name":"data2019","promote":"true"},"importOptions":{"fileType":"CSV"}}' \
  --data-binary $'Year,Costume\n2019,The Golden Girls\n2019,Pennywise'

Run data step to append data2019 to costumesByYear table

Finally, we run data step code to append table data2019 to table costumesByYear.

curl -X POST https://sasserver:8777/cas/sessions/<session-id>/actions/runCode \
  -H 'Authorization: Bearer $ACCESSTOKEN' \
  -H 'Content-Type: application/json' \
  -d {"code": "data temp.costumesbyyear(append=force) ; set temp.data2019;run;"}

Save the costumesByYear table back to the HALLOWEEN CASlib

Now that we have successfully appended the costumesByYear table in the TEMP Caslib, we are ready to save back to the HALLOWEEN Caslib.

curl -X POST https://sasserver:8777/cas/sessions/<session-id>/actions/ \
  -H 'Authorization: Bearer $ACCESSTOKEN' \
  -H 'Content-Type: application/json' \
  -d {"table":{"name":"costumesbyyear","caslib":"TEMP","singlePass":"false"},"name":"costumesbyyear","replace":"true","compress":"false","caslib":"HALLOWEEN","exportOptions":{"fileType":"BASESAS"}}

Delete TEMP Caslib

The TEMP Caslib is just that, temporary. With the code below we drop the Caslib and all its data.

curl -X POST https://sasserver:8777/cas/sessions/<session-id>/table.dropCaslib \
  -H 'Authorization: Bearer $ACCESSTOKEN' \
  -H 'Content-Type: application/json' \
  -d {"caslib":"TEMP"}

Delete the CAS session

The final step is to close our connection to the CAS server.

curl -X DELETE https://sasserver:8777/cas/sessions/<session-id> \
  -H 'Authorization: Bearer $ACCESSTOKEN'

Wrapping it up

There you have it. With a few simple commands we were able to load, append, and save a table. This example is fairly simple in scope, but translates into more complex use cases. The steps for my 2 x 50 table are the same as it would be for a 5GB table with hundreds of columns and millions of rows.

I have asked my mother to send the Polaroid photo of me as Ace in 1979. She just has to dig it out of a photo album. Check back in a week so you can gain fodder and poke fun at me.

Additional Resources - developers site for SAS
GitHub resources - GitHub repository for code used in this post

Append tables in SAS® Viya® with REST APIs – a treat, no tricks was published on SAS Users.

9月 282019

This article continues a series that began with Machine learning with SASPy: Exploring and preparing your data (part 1). Part 1 showed you how to explore data using SASPy with Python. Here, in part 2, you will learn how to begin to prepare your data to use it within a machine-learning model.

Review part 1 if needed and ensure you still have the ADULT data set ready to use. (The data set is available from the UCI Machine Learning Repository.) If not, take some time to download and explore the data again, as described in part 1.

Preparing your data

Preparing data is a necessary step to perform before applying the data toward a model. There are string values, skewed data, and missing data points to consider. In the data set, be sure to clear missing values, so you can jump into other methods.

For this exercise, you will explore how to transform skewed features using SASPy and Pandas.

First, you must separate the income data from the data set, because the income feature will later become your target variable to model.

Drop the income data and turn the pandas data frame back into a SAS data object, with the following code:

Now, let's take a second look at the numerical features. You will use SASPy to create a histogram of all numerical features. Typically, the Matplotlib library is used, but SASPy provides great opportunities to visualize the data.

The following graphs represent the expected output.

Taking a look at the numerical features, two values stick out. CAPITAL_GAIN and CAPITAL_LOSS are highly skewed. Highly skewed features can affect your model, as most models try to maintain a normally distributed curve. To fix this, you will apply a logarithmic transformation using pandas and then visualize the change using SASPy.

Transforming skewed features

First, you need to change the SAS data object back into a pandas data frame and assign the skewed features to a list variable:

Then, use pandas to apply the logarithmic transformation and convert the pandas data frame back into a SAS data object:

Display transformed data

Now, you are ready to visualize these changes using SASPy. In the previous section, you used histograms to display the data. To display this transformation, you will use the SASPy SASUTIL class. Specifically, you will use a procedure typically used in SAS, the UNIVARIATE procedure.

To use the SASUTIL class with SASPy, you first need to create a Python object that uses the SASUTIL class:


Now, use the univariate function from SASPy:


Using the UNIVARIATE procedure, you can set axis limits to the output histograms so that you can see the data in a clearer format. After running the selected code, you can use the dir() function to verify successful submission:


Here is the output:




The function calculates various descriptive statistics and plots. However, for this example, the focus is on the histogram.


Here are the results:

Wrapping up

You have now transformed the skewed data. Pandas applied the logarithmic transformation and SASPy displayed the histograms.

Up next

In the next and final article of this series, you will continue preparing your data by normalizing numerical features and one-hot encoding categorical features.

Machine learning with SASPy: Exploring and preparing your data (part 2) was published on SAS Users.

9月 092019

Editor's Note: This article was translated and edited by SAS USA and was originally written by Makoto Unemi. The original text is here.

SAS previously provided SAS Scripting Wrapper for Analytics Transfer (SWAT), a package for using SAS Viya functions from various general-purpose programming languages ​​such as Python.

In addition to SWAT, SAS launched Deep Learning Python (DLPy), a higher-level API package for Python, making it possible to use SAS Viya functions more efficiently from Python. In this article I outline more about what DLPy is and how it's implementation.

About DLPy

DLPy is a high-level package for the Python API created for deep learning and image action set after Viya3.3. DLPy provides an API similar to Keras to improve the efficiency of deep learning and image processing coding. With just a little rewriting of the existing Keras code, it is possible to execute the processing on SAS Viya.

For example, below is an example of a Convolutional Neural Network (CNN) layer definition; you can see that it is very similar to Keras.

The layers supported by DLPy are: InputLayer, Conv2d, Pooling, Dense, Recurrent, BN, Res, Proj, and OutputLayer. The following is an example of learning.

DLPy functions

Introducing DLPy's functions (partial excerpts), taking as an example the learning of multiple dolphins and giraffe images using CNN and applying test images to the model.

Implementation of major deep learning networks

DLPy offers the following pre-built deep learning models: VGG11/13/16/19, ResNet34/50/101/152, wide_resnet, and dense_net.

The following models also offer pre-trained weights using ImageNet data (these weights can be used for unique tasks by transfer learning): VGG16, VGG19, ResNet50, ResNet101, and ResNet152. The following is an example of transferring ResNet50 pre-trained weights.

CNN judgment basis information

Using the heat_map_analysis() method, you can output a colorful heat map and check where you focused on the image.

In addition, the get_feature_maps() method is used to get the feature map of each layer of CNN, and feature_maps.display() method is used to specify and display the obtained feature map layer and check can also do.

The following is the output result of layer 1 feature map.

The following is the output result of layer 18 feature map.

Deep learning & image processing related task support function

resize() method: Resize image data

as_patches() method: Image data expansion (generates a patch from the original image)

two_way_split() method: Data split (learning, testing)

plot_network() method: draws the structure of the defined deep learning layer (network) as a graphical diagram

plot_training_history() method: Iterative learning history display

predict() method: Display prediction (scoring) results

plot_predict_res() method: Display classification results

And of course, you can use DLPy to get data from a SAS Viya in-memory session, pass it to your local client, and convert it to common data formats like numpy arrays and Pandas DataFrames. The converted data can be smoothly supplied to models of other open source packages such as scikit-learn.

Regarding image classification using DLPy, videos are also available in the Deep Learning with Python (DLPy) Demo Series section of the DLPy product page.

SAS Viya: Package for Python API for deep learning and image processing: DLPy was published on SAS Users.

9月 062019

A few years ago I shared a method to publish content from SAS to a Slack channel. Since that time, our teams at SAS have gone "all in" on collaboration with Microsoft Office 365, including Microsoft Teams. Microsoft Teams is the Office suite's answer to Slack, and it's not a coincidence that it works in nearly the same way.

The lazy method: send e-mail to the channel

Before I cover the "deluxe" method for sending content to a Microsoft Teams channel, I want to make sure you know that there is a simple method that involves no coding, and no need for APIs. The message experience isn't as nice, but it does the job. You can simply "send e-mail" to the channel. If you're automating output from SAS, it's a simple, well-documented process to send e-mail from a SAS program. (Here's an example from me, using FILENAME EMAIL.)

When you send e-mail to a Microsoft Teams channel, the message notice includes the message subject line, sender, and the first bit of the message content. To see the entire message, you must click on the "View original e-mail" link in the notice. This "downloads" the message to your device so that you can open it with a local tool (such as your e-mail reader, Microsoft Outlook). My team uses this method to receive certain alerts from our platform. Here's an example:

To get the unique e-mail address for a channel, right-click on the channel name and select Get email address. Any message that you send to that e-mail address will be distributed to the team.

Getting started with a Microsoft Teams webhook

In order to provide a richer, more integrated experience with Microsoft Teams, you can publish content using a webhook. A webhook is a REST API endpoint that allows you to post messages and notifications with more control over the appearance and interactive options within the messages. In SAS, you can publish to a webhook by using PROC HTTP.

To get started, you need to add and configure a webhook for your Microsoft Teams channel:

  1. Right-click on the channel name and select Connectors.
  2. Microsoft Teams offers built-in connectors for many different applications. To find the connector for Incoming Webhook, use the search field to narrow the list. Then click Add to add the connector to the channel.
  3. You must grant certain permissions to the connector to interact with your channel. In this case, you need to allow the webhook to send messages and notifications. Review the permissions and click Install.
  4. On the Configuration page, assign a name to this connector and optionally customize the image. The image will be the avatar that's used when the connector posts content to the channel. When you've completed these changes, select Create.
  5. The connector generates a unique (and very long) URL that serves as the REST API endpoint. You can copy the URL from this field -- you will need it later in your SAS program. You can always come back to these configuration settings to change the connector avatar or re-copy the URL.

    At this point, it's a good idea to test that you can publish a basic message from SAS. The "payload" for a Teams message is a JSON-formatted structure, and you can find examples in the Microsoft Teams reference doc. Here's a SAS program that publishes the simplest message. Add your webhook URL and run the code to verify the connector is working for your channel.

    filename resp temp;
    options noquotelenmax;
    proc http
      /* Substitute your webhook URL here */
          "$schema": "",
          "type": "AdaptiveCard",
          "version": "1.0",
          "summary": "Test message from SAS",
          "text": "This message was sent by **SAS**!"

    If successful, this step will post a simple message to your Teams channel:

    Design a message card for Microsoft Teams

    Now that we have the basic plumbing working, it's time to add some bells and whistles. Microsoft Teams calls these notifications "message cards", which are messages that can include interactive features such as images, data, action buttons, and more.

    Designing a simple message

    Microsoft Teams supports a large palette of building blocks (expressed in JSON) to create different card experiences. You can experiment with these cards in the MessageCard Playground that Microsoft hosts. The tool provides templates for several card varieties, and you can edit the JSON definitions to tweak and design your own.

    For one of my use cases, I designed a simple card to show the status of our recommendation engine on SAS Support Communities. (Read this article for more information about how we built and monitor the recommendation engine.) The engine runs as a service and is accessed with its own API. I wanted a periodic "health check" to post to our internal team that would alert us to any problems. Here's the JSON that I used in the MessageCard Playground to design it.

    Much of the JSON is boilerplate for the message. I drew the green blocks to indicate the areas that need to be dynamic -- that is, replaced with values from the real-time API call. Here's what the card looks like when rendered in the Microsoft Teams channel.

    Since my API call to the recommendation engine service creates a data set, I can run that data through PROC JSON to create the JSON segment I need:

    /* reading the results from my API call to the engine */
    libname results json fileref=resp;
    /* Prep a simple name-value data set with the results */
    data segment (keep=name value);
     set results.root;
     name="Score data updated (UTC)";
     value= astore_creation;
     name="Topics scored";
     name="Number of users";
     value= left(num_users);
     name="Process time";
     value= process_time;
    /* use PROC JSON to create the segment */
    filename segment temp;
    proc json out=segment nosastags pretty;
     export segment;

    I shared a version of the complete program on GitHub. It should run as is -- but you would need to supply your own webhook endpoint for a channel that you can publish to.

    Design a message with actions

    I also use Microsoft Teams to share updates about the SAS Software GitHub organization. In a previous article I discussed how I use GitHub APIs to gather data from the GitHub service. Each day, my program summarizes the recent activity from and publishes a message card to the team. Here's an example of a daily update:

    This card is fancier than my first example. I added action buttons that can direct the team members to the internal reports for more details and to the GitHub site itself. I used the Microsoft Teams documentation and the MessageCard Playground to design the experience:

    Messaging apps as part of a DevOps strategy

    Like many organizations, we (SAS) invest a considerable amount of time and energy into gathering metrics and building reports about our operations. However, reports are useful only when the intended audience is tuned in and refers to them regularly. With a small additional step, you can use SAS to bring your most interesting data forward to your team -- automatically.

    Whether you use Microsoft Teams or Slack, automated alerting and updates are a great opportunity to keep your teams informed. Each of these tools offers fit-for-purpose connectors that can tie in with information from other popular operational systems (Salesforce, GitHub, Yammer, JIRA, and many more). For cases where a built-in connector is not available, the webhook approach allows you to easily create your own.

The post How to publish to a Microsoft Teams channel using SAS appeared first on The SAS Dummy.

7月 262019

In a previous post, Zero to SAS in 60 Seconds- SAS Machine Learning on SAS Analytics Cloud, I documented my experience with a SAS free trial on the SAS Analytics Cloud. Well, the engineers at SAS have been busy and created another free trial. The new trial covers SAS Event Stream Processing (ESP).

This time last year (when just starting at SAS), I only knew ESP as extrasensory perception. I'm more enlightened now. Working through this exercise introduced me to how event stream processing is a powerful and effective tool for analyzing data using machine learning and streaming analytics to uncover insights for real-time decision making. In a nutshell, you create a model, stream your data, process the results, and make timely decisions based on the results.

The trial uses SAS ESPPy, allowing you to embed an ESP project inside a Python pipeline. To see ESPPy in action take a look at this video. To learn more about ESP and IoT see this article on the SAS Communities Library. In this article I chronicle my journey through the trial while introducing key concepts and operations of ESP.

Register and get started

The process to register and initial login are identical to the machine learning article. You must have a SAS Profile to participate in the trial. The only difference is you need to follow this link to sign up for the ESP trial. Please refer to the machine learning article for detailed steps of signing up and logging in.

The use case

SAS Solar Farm in Cary

The SAS Solar Farm sits on almost 12 acres of SAS Headquarters property. There are 10,276 solar panels producing more than 3.6 million kilowatt hours annually. That’s enough power for more than 325 average sized U.S. homes.

As part of the environment management, it is important to continuously monitor the operation of the solar panels to optimize configuration parameters, detect potential equipment failure, and accurately forecast the amount of energy generated. Factors considered include panel angles, time of day, seasons, and weather patterns as the energy generated depends directly of the amount of sun available to the panels.

The ESP project in this demo is pre-loaded in the trial and is run through a Jupyter notebook. The project shows the monitoring of energy (kWh) and power (kW) generated during a specific time interval eliminating localized outlier effects and triggering alerts when there is a pre-defined difference in the energy generated between subsequent time intervals.

Solar Farm Data represented as digital art

Take two minutes and watch this video on how SAS uses SAS software to create a work of art with solar farm data.

Disclaimer: no sheep were harmed during data collection or writing of this article.

Navigating the trial

Once logged into the trial, you see the Applications screen.

ESP trial Applications screen

The Data and Team options in the left pane behave exactly as those in the machine learning trial. These sections allow you to access data and manage a multi-user system. Select the SAS Event Stream Processing icon to start a JupyterLab session.

JupyterLab home screen

I will not go into the details of JupyterLab here. The left pane contains menus, file management, and other options. The pane on the right displays three options:

Python 3 Notebook - a blank Jupyter notebook - documents that combine live, runnable code with narrative text (Markdown), equations (LaTeX), images, interactive visualizations and other rich output
Python 3 Console - a blank Python console - code consoles enable you to run code interactively in a kernel
Text File - basic text editor - enables you to edit text files in JupyterLab

For this article we're going to follow along and interact with the pre-loaded demo Solar Farm ESP project. To locate the Jupyter notebook double click the demo directory from the left pane.

Select the demo directory from the left pane

Next select Event_Stream_Processing. Before proceeding with the demo, I'd highly suggest opening the README.ipynb file.

Contents of the README notebook

Here you will find overview and environment organization information for the trial. The trial uses SAS ESPPy for designing, testing, and deploying projects on ESP Servers.

Step through the demo

Before starting the trial, I needed a little background on event stream processing. I located the SAS ESP product documentation. I recommend referring to it for details on the ESP model, objects, and workflow.

To access the demo, double click the demo directory from the left pane. The trial comes with five pre-loaded demos. Feel free to try any/all of them. Double click on ESP Basic Project - Solar Farm.ipynb to display the Solar Farm notebook. The notebook walks you through the ESP model creation and execution. To run a command place the cursor in a command cell and select the 'Run' button (triangle-shaped button at the top of the notebook). If no response returns when running the cell block, assume the commands ran successfully.

Below is a brief description of the steps in the project:

  1. Create the project and query used - this creates dedicated space and objects where the ESP process takes place
  2. Create input and aggregate windows - this action extracts desired data and creates data subsets from the stream
  3. Add a join window - this brings together lag and current values into the project
  4. Add a compute window - this calculates the difference between the previous and current event
  5. Add a filter window - this action filters occurrences outside a threshold value; this creates an alert for potential mechanical issues
  6. Define workflow connections - this defines the workflow between the various windows in the project
  7. Save the project - this generates an XML file for the project
  8. Load the project to the ESP Server - this loads the project and produces a graphical representation of the workflow

    Solar Farm project workflow

  9. Start streaming data - in this example, rather than streaming data in real time, the stream derives from the solar farm table data
  10. View solar farm data - this creates a graphical representation of streaming data

    Solar Farm graph for kW and kWh

While not included in the demo, the streaming data would pass through the filter and if a threshold breach occurs, an alert is created. Considering the graph above, alerts could very well have occurred just before 1:15 pm (IntkW drops from 185 to 150) and just before 2:30 pm (IntkW drops from 125 to 35).

Your turn

Now that you have a taste of ESP, feel free to step through the rest of the demos. You may also load your own data and create your own ESP models. Feel free to share your experience and what you create by leaving a comment.

SAS Event Stream Processing on SAS Analytics Cloud - my journey was published on SAS Users.