freqTab CAS action

1月 172023
 

Welcome to the continuation of my series Getting Started with Python Integration to SAS Viya. In previous posts, I discussed how to connect to the CAS server, working with CAS actions and CASResults objects, and how to summarize columns. Now it's time to focus on how to get the count of unique values in a CAS table column.

Load and prepare data

First, I connected my Python client to the distributed CAS server and named my connection conn. Then I created a function to load and prepare my CAS table. The custom function loads the WARRANTY_CLAIMS_0117.sashdat file from the Samples caslib into memory, renames the columns using the column labels and drops unnecessary columns. This simplifies the table for the demonstration.

The Samples caslib should be available in your SAS Viya environment and contains sample tables. For more information on how to rename columns in a CAS table view Part 11 - Rename Columns.

## Packages
import swat
import pandas as pd
 
## Options
pd.set_option('display.max_columns', 50)
 
## Connect to CAS
conn = ## your connection information
 
def prep_data():
    ## Load the data into CAS
    conn.loadTable(path='WARRANTY_CLAIMS_0117.sashdat', caslib='samples',
                   casout={'name':'warranty_claims', 'caslib':'casuser'})
 
    ## Reference the CAS table in an object
    castbl = conn.CASTable('warranty_claims', caslib = 'casuser')
 
    ## Store the column names and labels in a dataframe
    df_col_names = castbl.columnInfo()['ColumnInfo'].loc[:,['Column','Label']]
 
    ## Create a list of dictionaries of how to rename each column using the column labels
    renameColumns = []
    for row in df_col_names.iterrows():
        colName = row[1].values[0]
        labelName = row[1].values[1].replace(' ','_')
        renameColumns.append(dict(name=colName, rename=labelName))
 
    ## List of columns to keep in the CAS table
    keepColumns = {'Campaign_Type', 'Platform','Trim_Level','Make','Model_Year','Engine_Model',
                   'Vehicle_Assembly_Plant','Claim_Repair_Start_Date', 'Claim_Repair_End_Date'}
 
    ## Rename and drop columns to make the table easier to use
    castbl.alterTable(columns = renameColumns, keep = keepColumns)
 
    return castbl

Next, I'll execute the user defined function and store the CAS table object in the variable tbl  and view it's type.

tbl = prep_data()
type(tbl)
 
# and the results
NOTE: Cloud Analytic Services made the file WARRANTY_CLAIMS_0117.sashdat available as table WARRANTY_CLAIMS in caslib CASUSER(Peter).
swat.cas.table.CASTable

The results show that the WARRANTY_CLAIMS_0117.sashdat is available in the CAS server, and tbl is a CASTable object.

Lastly, I'll preview the distributed CAS table using the SWAT package head method.

tbl.head()

The results show a preview of the WARRANTY_CLAIMS CAS table. The table provides data on warranty claims for car repairs. The data in this example is small for training purposes. Processing data in the CAS server's massively parallel processing environment is typically reserved for larger data.

Using the Pandas API in the SWAT package - value_counts method

I'll begin by using the Pandas API in the SWAT package which provides the value_counts method. The value_counts method works like it's Pandas counterpart. For example, I'll obtain the count of unique values in the Engine_Model CAS table column. I'll store the results of in vc, then display the type and value of vc.

vc = (tbl               ## CAS table
      .Engine_Model     ## CAS table column
      .value_counts()   ## SWAT value_counts method
     )
 
## Display the type and value
display(type(vc),vc)

The SWAT value_counts method summarizes the data in the distributed CAS server and returns a Pandas Series to the Python client. Once you have the Pandas Series on the client, you can work with it as you normally would. For example, I'll plot the Series using the Pandas plot method.

vc.plot(kind = 'bar', figsize=(8,6));

In this example, I used the Pandas API in the SWAT package to summarize data on the CAS server's massively parallel processing environment to return smaller, summarized results to the Python client. Once the summarized results are on the client, I'll work with them using other Python packages like Pandas.

Using the freq CAS action

Instead of using the Pandas API in the SWAT package you can achieve similar results using native CAS actions. In SWAT, CAS actions are simply specified as a method. One action that provides the count of unique values is the simple.freq CAS action.

For example, I can find the count of unique values for multiple columns within the freq action. Here, I'll specify the Engine_Model, Model_Year and Campaign_Type columns in the the inputs parameter. Then, I'll call the Frequency key after the action to obtain the SASDataFrame stored in the dictionary returned to the Python client. Remember, CAS actions always return a dictionary, or CASResults object, to the Python client. You must use familiar dictionary manipulation techniques to work with the results of an action. For more information on working with results of CAS actions, check out Part 2 - Working with CAS Actions and CASResults Objects.

## Columns to analyze
colNames = ['Engine_Model', 'Model_Year', 'Campaign_Type']
 
## Execute the freq CAS action and store the SASDataFrame
freq_df = tbl.freq(inputs = colNames)['Frequency']
 
## Display the type and DataFrame
display(type(freq_df), freq_df)

Again, the action processes the data in the distributed CAS server and returns results to the Python client. The results show the freq action counts the unique values of each column and stores the results in a single SASDataFrame. Once you have the SASDataFrame on the client, you can work with it like you would a Pandas DataFrame.

For example, I'll loop over each analysis column, query the SASDataFrame for the specific column name, and then plot the count of unique values of each column using the familiar Pandas package.

for column in colNames:
    (freq_df
     .query('Column == @column')
     .loc[:,['CharVar','Frequency']]
     .set_index('CharVar')
     .sort_values(by = 'Frequency', ascending=False)
     .plot(kind='bar', figsize=(8,6), title = f'The {column} Column')
    )

The loop produces a visualization of the count of unique values for each analysis column. This was all done using familiar Pandas code on the client side. Remember, the distributed CAS server did all of the processing and summarization, then returned smaller summarized results to the Python client.

Using the freqTab CAS action

Lastly, you can use the freqTab.freqTab CAS action to construct frequency and crosstabulation tables. The freqTab action provides a variety of additional features and information. The action is not loaded by default, so I'll begin by loading the action set.

conn.loadActionSet('freqTab')

Then I'll use the freqTab action in the freqTab action set to count the unique values for the Model_Year and Engine_Model columns, and also count the unique values of Engine_Model by Model_Year.

tbl.freqTab(tabulate = [
                'Model_Year',
                'Engine_Model',
                {'vars':['Engine_Model','Model_Year']}
            ]
    )

The results above show the freqTab action returns a dictionary with a variety of information. The first SASDataFrame is level information, the second SASDataFrame shows the number of observations used, and the remaining SASDataFrames show the two one-way frequency tables for Model_Year, and Engine_Model, and the crosstabulation between Engine_Model by Model_Year (also includes the totals).

With the results on the Python client, you can begin accessing and manipulating the SASDataFrames as needed.

Summary

The SWAT package blends the world of Pandas and CAS. You can use many of the familiar Pandas methods within the SWAT package like value_counts, or the flexible, highly optimized CAS actions like simple.freq and freqTab.freqTab to obtain counts of unique values in the massively parallel processing CAS engine. For more examples on the freq or freqTab CAS actions, check out my CAS action four part series (part 1, part 2, part 3 and part 4). The four part series executes CAS actions using the native CAS language. However, with some small changes to the syntax you can execute the same actions using Python.

Additional and related resources

Getting started with Python integration to SAS® Viya® - Part 12 - Count of Unique Values was published on SAS Users.

12月 202022
 

Welcome back to my SAS Users blog series CAS Action! - a series on fundamentals. The previous posts show how to use the simple.freq CAS action to generate, save and group simple frequency tables. In this post I will show you how to use the freqTab.freqTab CAS action to generate more advanced one-way frequency and crosstabulation tables.

In this example, I will use the CAS language (CASL) to execute the freqTab CAS action. Instead of using CASL, I could execute the same action with Python, R and more with some slight changes to the syntax for the specific language. Refer to the documentation for syntax in other languages.

Load the demonstration data into memory

I'll start by executing the loadTable action to load the WARRANTY_CLAIMS_0117.sashdat file from the Samples caslib into memory. By default the Samples caslib should be available in your SAS Viya environment. I'll load the table to the Casuser caslib and then I'll clean up the CAS table by renaming and dropping columns to make the table easier to use. For more information how to rename columns check out my previous post. Lastly I'll execute the fetch action to preview 5 rows.

proc cas;
   * Specify the input/output CAS table *;
   casTbl = {name = "WARRANTY_CLAIMS", caslib = "casuser"};
 
   * Load the CAS table into memory *;
    table.loadtable / 
        path = "WARRANTY_CLAIMS_0117.sashdat", caslib = "samples",
        casOut = casTbl + {replace=TRUE};
 
* Rename columns with the labels. Spaces replaced with underscores *;
 
   *Store the results of the columnInfo action in a dictionary *;
   table.columnInfo result=cr / table = casTbl;
 
   * Loop over the columnInfo result table and create a list of dictionaries *;
   listElementCounter = 0;
   do columnMetadata over cr.ColumnInfo;
	listElementCounter = listElementCounter + 1;
	convertColLabel = tranwrd(columnMetadata['Label'],' ','_');
	renameColumns[listElementCounter] = {name = columnMetadata['Column'], rename = convertColLabel, label=""};
   end;
 
   * Rename columns *;
   keepColumns = {'Campaign_Type', 'Platform','Trim_Level','Make','Model_Year','Engine_Model',
                  'Vehicle_Assembly_Plant','Claim_Repair_Start_Date', 'Claim_Repair_End_Date'};
   table.alterTable / 
	name = casTbl['Name'], caslib = casTbl['caslib'], 
	columns=renameColumns,
	keep = keepColumns;
 
   * Preview CAS table *;
   table.fetch / table = casTbl, to = 5;
quit;

The results above show a preview of the warranty_claims CAS table.

One-way frequency tables

To create more advanced one-way frequency tables, use the freqTab.freqTab CAS action. In the freqTab action, use the table parameter to specify the CAS table and the tabulate parameter to specify the column, or columns, to analyze. The tabulate parameter is extremely flexible and provides a variety of ways to analyze your data. In this example, I'll specify the warranty_claims CAS table and the Campaign_Type and Make columns as a list in the tabulate parameter.

proc cas;
   * CAS table reference *;
   casTbl = {name = "WARRANTY_CLAIMS", caslib = "casuser"};
 
   * One-way frequency tables *;
   freqTab.freqTab / 
       table = casTbl,
       tabulate = {'Campaign_Type','Make'};
quit;

Results

The results above show the freqTab action generates a variety additional information compared to the freq action. Information including the number of observations used, variable level and timing. The freqTab action frequency tables contain the expected total frequency of each value; moreover, it also includes the total percentage, cumulative frequency and cumulative percent.

Two-way crosstabulation tables

Instead of producing one-way frequency tables, you can also create two-way crosstabulation tables. One way is to continue to add elements in the list in the tabulate parameter. Here a one-way frequency table will be created for Campaign_Type and Make as seen before. Then, I'll add a dictionary in the list. The vars key specifies the Make column, and the cross key specifies the Campaign_Type and Model_Year columns. The columns in the cross key are paired with those specified in vars. This example will produce a two-way crosstabulation between Make by Campaign_Type and Make by Model_Year.

proc cas;
   * CAS table reference *;
   casTbl = {name = "WARRANTY_CLAIMS", caslib = "casuser"};
 
   * One-way frequency and two-way crosstabulation tables *;
   freqTab.freqTab / 
      table = casTbl,
      tabulate = {
 		'Campaign_Type',
		'Make',
              	{vars = 'Make', cross = {'Campaign_Type', 'Model_Year'}}
      };
quit;

Partial results

The results above show the freqTab action returns the one-way frequency tables for Campaign_Type and Make as shown earlier and displays the two-way crosstabulation between Make by Campaign_Type and Make by Model_Year.

While this is great, what if I want to avoid the total row and display the Make for each row in the two-way crosstabulation as a single table?

Two-way crosstabulation as a single table

To present the results as a single table and remove the total row, add the tabDisplay parameter with the value list. In the code, I'll remove the one-way frequencies and add the tabDisplay parameter.

proc cas;
   * CAS table reference *;
   casTbl = {name = "WARRANTY_CLAIMS", caslib = "casuser"};
 
   * Two-way crosstabulation as a single table *;
   freqTab.freqTab / 
       table = casTbl,
       tabulate = {
              	{vars = 'Make', cross = {'Campaign_Type', 'Model_Year'}}
       }, 
       tabDisplay='list';
quit;

Partial results

The results show each two-way crosstabulation as a single table and the total row is removed.

Next, what if you want to create a three-way crosstabulation table? Well this is a bit tricky.

Three-way crosstabulation

To produce a three-way crosstabulation, specify the columns as a list within the vars parameter, with the tabDisplay parameter equal to list. If you do not specify the tabDisplay parameter, the freqTab action will return three two-way crosstabulation tables. Each table will be created for each distinct group of the first column specified in the list. This example will create a crosstabulation of Model_Year by Campaign_Type by Make.

proc cas;
   * CAS table reference *;
   casTbl = {name = "WARRANTY_CLAIMS", caslib = "casuser"};
 
   * Three-way crosstabulation table *;
   freqTab.freqTab / 
       table = casTbl,
       tabulate = {
		{vars={'Model_Year','Campaign_Type','Make'}}
       }, 
       tabDisplay='list';
quit;

Partial results

Notice in the results above a three-way crosstabulation table was created. The order of the columns is created by the order of the columns specified in the list.

Summary

The freqTab.freqTab CAS action provides a variety of ways to create frequency and crosstabulation tables in the distributed CAS server. There are a variety of parameters you can add to modify it to meet your objectives. We've only scratched the surface!

Additional resources

freqTab CAS action
SAS® Cloud Analytic Services: CASL Programmer’s Guide 
CAS Action! - a series on fundamentals
Getting Started with Python Integration to SAS® Viya® - Index
SAS® Cloud Analytic Services: Fundamentals

CAS-Action! Advanced Frequency Tables - Part 4 was published on SAS Users.