predictive analytics

6月 062016
 

There's no doubt that artificial intelligence (AI) is here and is rapidly gaining the attention of brands large and small. As I talk to customers and prospects, they are interested in understanding how AI and its subcomponents (cognitive computing, machine learning, or even deep learning) are being woven into various departments (marketing, sales, service and support) at organizations across industries.

Here are some examples of cognitive computing and machine learning today at organizations, and how these capabilities will enhance customer experience in the future.

I think it's important to start with a few foundational facts:

  • AI as a practice is not new – John McCarthy and others started their research into this area back in the 1950s.
  • AI and its subcomponents are rooted in predictive analytics (neural networks, data mining, natural language processing, etc., all have their beginnings here).
  • Automation and the use of supervised and unsupervised algorithms are crucial to machine learning and cognitive computing use cases.
  • Deep learning uses the concept of teaching and training to accomplish more advanced automation tasks. It’s important to note that deep learning is not as prevalent from a customer experience perspective as machine learning and cognitive computing. Let's take a look at what AI means for brands as the customer experience becomes the primary differentiator for marketing organizations.

algorithms

A cognitive computing use case

Cognitive computing enables software to engaging in human-like interactions. Cognitive computing uses analytical processes (voice to text, natural language processing and text and sentiment analysis) to determine answers to questions.

For example, a SAS customer uses automation to provide a quicker response to service requests that come in to the brand's contact center. It can send an automated reply to service inquires, direct the customer to appropriate departments, and send customer responses back to the channel – all using SAS solutions. These capabilities reduces the number of replies that require human intervention and improves service response times. This same use case can be applied across industries such as retail, telecom, financial services and utilities. The end result? A happier customer and an improved customer experience.

cognitive computing

Analytics: the core of machine learning

Machine learning uses software that can scan data to identify patterns and predict future results with minimal human intervention.

Analytics play an important role. Model retraining, the use of historical data and environmental conditions all serve as inputs into the supervised and unsupervised algorithms that machine learning uses. For example, some of our large telecom and financial services providers use data, customer journey maps and past patterns to be able to serve timely and relevant offers during customer interactions.

Many of our customers can do in less than one second, and are providing response and replies that are relevant and individualized. Another great example of machine learning is the development work that SAS is doing currently with regard to its marketing software.

Our customer intelligence solutions use embedded machine learning processes to make setting up activities and completing tasks in the software easier for analysts and marketers alike. For instance, the software will automatically choose the optimal customer segment and creative combinations for a campaign. It will also recommend the best time to follow up with a customer or segment and on the customer’s preferred devices. Machine learning also gives marketers the ability to understand how to use and modify digital assets for the most reach and optimal conversions.

The newest addition to artificial intelligence

Deep learning, a newer concept that relies on deep neural networks – is certainly something that is coming to the marketing and service realms. Many companies have started looking at how we teach and train software to accomplish complex activities – drive cars, play chess, make art (the list goes on). As for marketing, I believe we will see deep learning being used to run marketing programs, initiate customer service interactions or map customer journeys in detail.

These are just a few examples of how we are seeing AI improve the customer experience. You and I, as digitally empowered consumers, will certainly benefit from man and machine working together to automate the interactions that we have with brands on a daily basis. I urge you to keep an eye out for how brands big and small are automating the interactions they have with you – I think you will be pleasantly surprised with the outcome.

tags: artificial intelligence, cognitive computing, customer analytics, deep learning, marketing automation, marketing software, predictive analytics, Predictive Marketing, SAS Customer Intelligence 360

How artificial intelligence will enhance customer experiences was published on Customer Intelligence.

6月 062016
 

There's no doubt that artificial intelligence (AI) is here and is rapidly gaining the attention of brands large and small. As I talk to customers and prospects, they are interested in understanding how AI and its subcomponents (cognitive computing, machine learning, or even deep learning) are being woven into various departments (marketing, sales, service and support) at organizations across industries.

Here are some examples of cognitive computing and machine learning today at organizations, and how these capabilities will enhance customer experience in the future.

I think it's important to start with a few foundational facts:

  • AI as a practice is not new – John McCarthy and others started their research into this area back in the 1950s.
  • AI and its subcomponents are rooted in predictive analytics (neural networks, data mining, natural language processing, etc., all have their beginnings here).
  • Automation and the use of supervised and unsupervised algorithms are crucial to machine learning and cognitive computing use cases.
  • Deep learning uses the concept of teaching and training to accomplish more advanced automation tasks. It’s important to note that deep learning is not as prevalent from a customer experience perspective as machine learning and cognitive computing. Let's take a look at what AI means for brands as the customer experience becomes the primary differentiator for marketing organizations.

algorithms

A cognitive computing use case

Cognitive computing enables software to engaging in human-like interactions. Cognitive computing uses analytical processes (voice to text, natural language processing and text and sentiment analysis) to determine answers to questions.

For example, a SAS customer uses automation to provide a quicker response to service requests that come in to the brand's contact center. It can send an automated reply to service inquires, direct the customer to appropriate departments, and send customer responses back to the channel – all using SAS solutions. These capabilities reduces the number of replies that require human intervention and improves service response times. This same use case can be applied across industries such as retail, telecom, financial services and utilities. The end result? A happier customer and an improved customer experience.

cognitive computing

Analytics: the core of machine learning

Machine learning uses software that can scan data to identify patterns and predict future results with minimal human intervention.

Analytics play an important role. Model retraining, the use of historical data and environmental conditions all serve as inputs into the supervised and unsupervised algorithms that machine learning uses. For example, some of our large telecom and financial services providers use data, customer journey maps and past patterns to be able to serve timely and relevant offers during customer interactions.

Many of our customers can do in less than one second, and are providing response and replies that are relevant and individualized. Another great example of machine learning is the development work that SAS is doing currently with regard to its marketing software.

Our customer intelligence solutions use embedded machine learning processes to make setting up activities and completing tasks in the software easier for analysts and marketers alike. For instance, the software will automatically choose the optimal customer segment and creative combinations for a campaign. It will also recommend the best time to follow up with a customer or segment and on the customer’s preferred devices. Machine learning also gives marketers the ability to understand how to use and modify digital assets for the most reach and optimal conversions.

The newest addition to artificial intelligence

Deep learning, a newer concept that relies on deep neural networks – is certainly something that is coming to the marketing and service realms. Many companies have started looking at how we teach and train software to accomplish complex activities – drive cars, play chess, make art (the list goes on). As for marketing, I believe we will see deep learning being used to run marketing programs, initiate customer service interactions or map customer journeys in detail.

These are just a few examples of how we are seeing AI improve the customer experience. You and I, as digitally empowered consumers, will certainly benefit from man and machine working together to automate the interactions that we have with brands on a daily basis. I urge you to keep an eye out for how brands big and small are automating the interactions they have with you – I think you will be pleasantly surprised with the outcome.

tags: artificial intelligence, cognitive computing, customer analytics, deep learning, marketing automation, marketing software, predictive analytics, Predictive Marketing, SAS Customer Intelligence 360

How artificial intelligence will enhance customer experiences was published on Customer Intelligence.

5月 252016
 

In April, SAS 360 Discover was introduced at SAS Global Forum 2016. Since my career started at SAS over five years ago, I have been anticipating this important announcement. In my opinion, this is a major breakthrough for the space of digital intelligence.

In my first year working at SAS, I learned of research and development to address industry needs for digital marketers. Although technologies from Google, Adobe and others address web analytics with measurement reporting, there was a shortcoming.

Historically, web analytics has always had a huge data challenge to cope with since its inception. And when the use case for analysts is to run summary reports, clickstream data is normalized:

Data Aggregation for Web Analytics

It nicely organizes raw clickstream into small, relevant data for reporting. However, this approach presents challenges when performing customer-centric analysis. Why? Holistic customer analysis requires the collection and normalization of digital data at an individual level. This is one of the most important value props of SAS 360 Discover.

Multi-source data stitching and predictive analytics require a data collection methodology that summarizes clickstream:

Data Aggregation for Advanced Analytics

The data is prepared to contextualize all click activity across a customer's digital journey in one table row, including a primary key to map to all visits across browsers and devices. The data table view shifts from being tall and thin to short and wide. The beauty of this is it enables sophisticated analysis to prioritize what is important, and what isn't. This concept of data collection and management is considered a best practice for advanced customer analytics.

How many marketers do you know who wake up in the morning and claim they can't wait to hear about how analysts are spending 80 percent of their time preparing raw web behavior data, rather than focusing on analysis and actionable insights? None, you say? Exactly! Wouldn't you rather hear your marketing analysts spend their time doing this?

20-80 Rule

I have always appreciated SAS for what it can do with structured, semi-structured, and unstructured information, but there has always been one dependency – where do I point SAS to obtain the originating data? SAS 360 Discover eliminates this requirement, and provides data collection mechanisms for your brand's website(s) and mobile apps.

SAS-Tag

 

In addition, the raw semi-structured data streams SAS natively collects are run through a pre-built relational data model using SAS Data Management for various forms of contextualization that stretch far beyond traditional web analytic use cases.

Data Model

The output of this data model schema summarizes all digital visitor behavior at this level of detail:

  • Customers.
  • Anonymous visitors.
  • Sessions (or visits).
  • Interactions (or clicks/hits).

Complete View

The data model schema will allow for additional configurations and introduction of other digital data sources to accommodate your organization's evolving needs. More importantly, the benefits of the output are profound, and listed below is a summary of SAS 360 Discover benefits:

  • Digital data normalization to support online and offline data stitching of customers.
    • When offline data is residing in your organization's data warehouse, information is available at the customer level (not a click or hit level). That's a problem when you want to link it with web or app data. The amount of time analysts spend reshaping raw HIT extracts from their web analytics solution is astonishing, and quite difficult. Customer analysis requires online/offline data stitching, and overcoming this obstacle was a problem SAS set out to solve.
  • Measurement reporting and visualization of customers and segments.
    • The reporting remains critical as an entry stage for analytics. SAS believes there should be no limit to how many reports and dashboards can be produced to meet business objectives. In other words, unlimited ad hoc reports using SAS Visual Analytics, which is the analysis tool that is packaged with SAS 360 Discover
  • Predictive analyticsmachine learning, and data science  of customers and anonymous traffic.
  • Fueling the SAS customer decision hub
    • Brands gain a competitive edge if they stop perceiving customer engagement as a series of discrete interactions and instead see it as customers do: a set of interrelated interactions that, when combined, make up the customer experience. By folding in all known customer level information into a common hub, SAS can analyze, score and take intelligent, contextual actions across channels.

SAS CDH

The path to digital intelligence from traditional web analytics covers the diversity of data, advanced analytic techniques, and injection of prescriptive insights to support decision-making and marketing orchestration. Digital intelligence is a transformation — making it a competitive differentiator. It aims to convert brands to become:

  1. Customer-centric rather than channel-centric
  2. Focused on enterprise goals as opposed to departmental
  3. Enabled for audience activation and optimization
  4. Analytical workhorses

I suspect you would love to see demonstrations of the data that SAS 360 Discover collects from websites and mobile apps in action:

  1. Decision Trees
  2. Clustering
  3. Forecasting
  4. Logistic Regression

In addition, here is the on-demand video of the SAS Global Forum 2016 keynote presentation of SAS Customer Intelligence 360.

As a marketing analyst at heart, it is extremely gratifying to share my excitement for SAS 360 Discover.  The time for predictive customer marketing in the digital ecosystem is here, and the 800-pound gorilla in advanced analytics has just unleashed your new secret weapon.

tags: 360 Discover, Data Driven Marketing, data science, Digital Analytics, Digital Intelligence, digital marketing, Integrated Marketing, marketing analytics, predictive analytics, Predictive Marketing, SAS Customer Intelligence 360

SAS 360 Discover: Predictive marketing's new secret weapon was published on Customer Intelligence.

5月 232016
 

“And the weather yesterday was a sunny 18oC with warm spells in the south and showers in the north. This is similar to the pattern we saw last Thursday.” Imagine if the weather forecast only restated what happened in the past -- would we bother waiting until the end of […]

And the weather yesterday was … was published on SAS Voices.

4月 292016
 

The Barnett Shale in North Texas hit a historic mark on April 25: Its rig count fell to zero. Two hundred rigs once harvested the 40 trillion cubic feet of natural gas in this massive basin, stretching beneath 17 Texas counties. Today, nothing. This dramatic silence in North America’s second-largest […]

All quiet on the Barnett Front was published on SAS Voices.

4月 192016
 

Of course everyone has heard all the hype on big data and how it can help business’ become more successful. But have you thought about the different types of big data? How the different types of data can support different initiatives within your business?

Structured versus unstructured data in retail is a key topic to first understand in order to create a successful plan. Structured data is data that sits in a database, a file, or a spreadsheet. It is generally organized and formatted. In retail, this data can be point-of-sale data, inventory, product hierarchies, ect. Unstructured data does not have a specific format. It can be customer reviews, tweets, pictures, and even hashtags.

So now that you know what structured versus unstructured data in retail is, let’s talk about how to use it. Customer reviews are a great way to understand why a certain product is or isn’t working. Word clouds are a tool to visualize large amounts of customer reviews. Finding key words that are continuously being used canRetail-Transaction_50B9900 give insight in to product defects. For example, if ‘fits small’ is frequently used then you can be proactive by adding this to the product description or above the size selection. This will reduce customer returns and money lost on shipping fees.

Unstructured data can also be analyzed for sentiment analysis. This gives insight in to whether the customer’s response is positive, negative, or neutral. A great example of this is being able to analyze your customer’s twitter responses. Let’s say you post a tweet with products you are thinking about buying for your spring line and your brands hashtag. This enables retailers to understand your customers’ response before you even buy the product. This technique can also be used in-season and give insight to merchants on areas of opportunity or risk so that open to buy can be managed. Break down the silos between merchandising and marketing and enhance collaboration.

It doesn’t take a data scientist to use unstructured data analytical techniques either. If you’re looking to use unstructured data in your business process, check out more information on SAS Visual Analytics. Also, take a look at the 2015 Forrester Wave report where SAS was named a leader in Big Data Predictive Analytics Solutions.

tags: big data, predictive analytics, retail, sentiment analysis, unstructured data

Structured Versus Unstructured Data in Retail was published on Customer Intelligence.

4月 082016
 

How do universities predict which students will enroll? And how do they determine what actions recruitment officers should take to entice students to pick their university? These were two of the key questions tackled by Lisa Moore, Institutional Research Analyst at University of Oklahoma, during her presentation at The Texas […]

Data-informed recruiting was published on SAS Voices.

3月 312016
 

Digital analytics primarily supports functions of customer and prospect marketing. When it comes to the goals of digital analysis, it literally mirrors the mission of modern marketing. But what exactly is today's version of marketing all about?Modern Marketing

Honestly, we've been talking about this for years. And years. We ALL know it's what we should be doing and conceptually it's very simple, but practically, it has been very hard to achieve. Why?

Even with great web analytics, there have always been critical missing insights, which meant we didn't know for certain what the next-best-interaction for each customer was at any point in time. In addition, the development of insights and the use of analytics to define high-propensity audience segments has been distinctly slow and batch-driven in nature, delaying relevant delivery of targeted interactions. So we may get the message right, but we probably don't deliver it in a timely, consistent way, which has a dramatic impact on customer responsiveness and marketing effectiveness.

So in today's connected, always-on, highly opinionated world, we need to be a little sharper in meeting our customer's basic expectations, never mind surprising, delighting, and impressing them. While the concept of customer-centricity continues to increase in importance, improving our analytical approach to support this premise is vital.

SAS recognizes today's modern marketing challenges with digital and customer analytics. It is our mission to enable marketers to benefit from approachable and actionable advanced analytics to make more powerful decisions within today’s complex and interconnected business environments. That sounds great, right? I sense some of you reading this are raising an eyebrow of suspicion at this very moment.

Practically speaking, we want to show you exactly what that means. On March 29th, 2016, we aired episode one of a two-part webcast series, and it is now available for on demand viewing:

SAS for Digital Analytics: Introduction & Advancing Segmentation [Part 1]

We genuinely hope the webcast provided a proper introduction to how SAS participates in the space of digital analytics for data-driven marketing, and please come back in a couple of weeks when we will post Part 2 in this series entitled: SAS for Digital Analytics: Personalization & Attribution [Part 2]

If you enjoyed this article, be sure to check out my other work here. Lastly, if you would like to connect on social media, link with me on Twitter or LinkedIn.

tags: Advanced Analytics, customer analytics, customer intelligence, data integration, data management, Data Mining, data science, Digital Analytics, Digital Intelligence, digital marketing, Integrated Marketing, marketing analytics, predictive analytics, Predictive Marketing, segmentation, web analytics, webcast

Introduction to SAS for digital analytics and segmentation was published on Customer Intelligence.

3月 232016
 

The business opportunity to intelligently manage customer journeys across their lifecycle with your brand has never been greater, but so is the danger of not meeting their expectations and losing out to savvier competitors. In my opinion, the current state of most digital analytic practices continue to be siloed, tactical, and narrowly fixated on channel-obsessed dashboard reporting. That might come across as presumptuous, but keep this in mind - customer-centricity is a hot topic at the C-Suite level, and your CMO has  stated (or will very soon) that your organization is transforming into a personalization super force that will be marketing to the segment of one. If that is the case, the category of digital analytics has got to step up its game!

The antidote is digital intelligence which represents a strategic shift in approach to marketing analysis that uses insights from traditional and modern channels (we're talking online AND offline) to enable actionable, customer-obsessed analytical brilliance.

The era of the empowered customer is unraveling itself — trends in which consumers, not brands, own influence, backed by the rapid rise of digital. I strongly believe that no matter how important a company's products or services are with my life, the majority of brands I do business with continue to perform channel-centric analysis, and remain unaware of the different interactions I have with them across ALL channels. I don't care about your email or search marketing KPIs. What I care about is how you treat Suneel, no matter what device, channel, or platform I select to interact with you on.

Meanwhile, digital marketing spend continues to grow at a tenacious pace, cementing the importance of digital channels in managing the customer journey. Digital marketing is effective in all phases of the customer life cycle, ranging from acquisition, upsell/cross-sell, retention, and winback, proven by the ongoing shift of wallet share to online channels. While these are exciting times for omnichannel marketers, these more holistic approaches bring challenges. In today's fragmented digital landscape, long-established methods focused on web analytics and aggregated customer views are ill-equipped to keep pace with:

Digital interaction bread crumb trails

Customers (and prospects) interact with brands across an array of online channels and devices, creating new paths to generate incremental value associated with marketing-centric KPIs. However, customers expect personalized relevance in moments of truth, raising the bar for analytics and marketing execution. A brand's digital presence is much more than a website, such as social media, mobile applications, and wearable technologies. Conventional web analytics only track onsite behavior and lack the ability to comprehend tech-savvy customers in 2016.

The collapse of the digital silo

Brands typically construct offline and online interaction channels confined from one another, so let's reflect on that for a moment. Isn't it time we recognize that customer data is customer data, regardless of where the ingredients are collected? To deliver comprehensive customer insights, brands seek to merge digital and offline data sources together. Digital & customer analytics teams are attempting to work together, but their projects struggle due to a clash of approaches & culture. Some of the main drivers are:

  1. Data — Customers leave trails of information for marketers to chew on, and are available in structured, semistructured, and unstructured formats. There's no excuse anymore for brands to not be able to work with all three. Approachable technology exists to integrate multiple sources of online and offline customer data in meaningful ways to analyze and take action on.
  2. Skills — Have you ever sat in a meeting with data scientists and web analytic ninjas? It's like they speak two different languages, and communication between these two segments is critical for an organization to innovate in its commitment to customer analytics.
  3. Analysis — There is a reason why there is so much discussion around the application of advanced analytics. In many ways, digital marketing is ripe for analytical maturity, ranging across segmentation, attribution, and personalization. The discipline has proven its value to help differentiate a brand from its competition. When are the days of Data-Scientist“good enough” analytics going to end? Let's keep the science in data science, and stop succumbing to the false hype that sophisticated predictive marketing can be accomplished through black box, easy-button solutions.

Dynamic interaction management

Brands seek to react intelligently to shifts in consumer behavior in milliseconds, which makes the intersection of predictive analytics and data-driven marketing vital for orchestrating the customer journey. To reach your target audience in opportunistic micro-moments, the requirement of real-time actionable analytics with direct connections to personalization and marketing automation systems is the queen bee. The sole dependence on isolated, retrospective reports and dashboards of aging web analytic solutions has serious limitations in modern marketing.

Given the investment and revenue at stake for most brands, it is increasingly important to champion support of the development and continuous optimization of digital channels. Simply put, analytical sophistication lives at the center of that process. Yet most organizations continue to approach digital analytics focused on discerning traffic sources and aggregated website user behaviors. Given the intricate complications and aspirational promise of digital marketing, brands should consider modernizing and maturing their approaches to customer analytics because:

  • CX matters: Customers don't care about the challenges related to identity management across multiple visits (or sessions), browsers, channels, and devices. Does your web analytic platform support your team's abilities to recognize and track customers, not clicks or hits, across the fragmentation of touch points? With careful consideration towards the areas of data management, data integration, and data quality, analyzing customer-centric (or visitor-centric) digital activity on their journeys to making (or not making) a purchase with your brand is absolutely feasible.
  • "Good enough" analytics must end: Digital analytic teams must graduate from machine gunning their organizations with traffic-based reports that summarize the past to producing predictive insights that marketers can interpret, and take action with. I'm always impressed by web analytic teams that produce an array of historical reports with beautiful visualizations, segmenting and slicing away at their tsunami of clickstream data. However, how much impact and relevance to the business can this approach have? Customer-centricity demands that we re-engineer our thinking, and make the shift from reactive to predictive marketing analytics.
  • There's nothing exciting about siloed channel analysis: To deliver the elusive and mythical 360 degree view of customer insights, it turns out you don't need magical wizards like Gandalf or Albus Dumbledore by your side. Have you ever wondered why web analytic software doesn't allow you to perform data stitching with offline data sources? How about data mining and predictive analytic capabilities? Well, it boils down to how digital data is collected, aggregated, and prepared for downstream use cases.

Web analytics has always had a BIG data challenge to cope with since it's inception in the mid 1990's, and when the use case for analysts is to run historical summary reports and visual dashboards, clickstream data is collected and normalized in a structured format as shown in this schematic:

Data Aggregation for Web Analytics

This format does a very nice job of organizing clickstream data in such a way that we go from big data to small, more relevant data for reporting. However, this approach presents challenges when performing customer-centric analysis which requires data stitching across online and offline data sources. Why you ask? Because you cannot de-aggregate data that was designed for channel and campaign performance summarizations. Holistic customer analysis, from a digital viewpoint, requires the collection and normalization of granular, detailed data at an individual level. Can it be done? Of course it can.

Multi-source data stitching, data mining and predictive analytics require a specific digital data collection methodology that summarizes clickstream data to look like this:

Data Aggregation for Advanced Analytics

Ultimately, the data is collected and prepared to contextually summarize all click activity across a customer's digital journey in one table row, including a primary customer key to map to all visits across channels and devices. The data table view shifts from being tall and thin, to short and wide. The more attributes or predictors an analyst adds, the wider the table gets. The beauty of this approach is it allows marketers and analysts to be curious, add more data sources, and allow algorithmic analysis to prioritize what is important, and what isn't. This concept is considered a best practice for advanced customer analytics.

  • Beware of blind spots: As time passes, customers in every industry are progressively sharing more data about themselves through existing and emerging digital outlets, such as mobile applications, wearables, and other connected technology. The opportunity to ingest and analyze these new sources should excite any marketer who claims to be data-driven. However, does your web analytics platform allow you to analyze these new digital touchpoints? A brand's ability to absorb, integrate, analyze, and derive marketable insights from emerging data sources is key in this new paradigm to avoid being blindsided by customers and the competition.

The path to digital intelligence from traditional web analytics needs to cover the diversity of data, advanced analytic techniques, and injection of prescriptive insights to support decision-making and marketing orchestration. Digital intelligence is a transformation for web analytic teams — making it a competitive differentiator if executed well. It aims to transform brands to become:

  1. Customer-centric rather than channel-centric: As customers and prospects weave across an ocean of marketing channels and connected devices, digital intelligence supports the integrated analysis of interactions in concert, rather than with disconnected channel views. In addition to visibility across all channels, analysis is highly granular to identify, track, and prioritize next-best-actions for individuals. In other words, hyper-personalization to the segment of one!
  2. Focused on enterprise goals as opposed to departmental: To enable omnichannel analytics, digital intelligence is highly dependent on customer data management capabilities across all data types – structured, semistructured, and unstructured. This includes fusing interaction and behavioral data across all digital channels with first-party offline customer data, as well as second- and third-party data (if available). This enriched potpourri of data must be prepared to feed the analytical ninjas that sit within the marketing organization, line of business or centralized customer intelligence team, because it is their job to exploit this stream of information and generate insights for the organization as a whole.
  3. Enabled for audience activation and optimization. The mission of digital intelligence is the direct application of analytics to generate data-driven evidence that helps business stakeholders make clearer decisions. The potential of data mining exponentially increases with richer customer data to support segmentation, personalization, optimization, and targeting - in other words, connecting data and analytics to the delivery of relevant content, offers, and awesome experiences.
  4. Analytical workhorses: The incredibly fast-moving world of digital interactions and campaigns mean that marketers desperately need quicker analysis. Waiting days or weeks for reports and research equates to failure. Digital intelligence delivers efficiency at a pace that more nearly matches users' decision-making schedules.

SAS Customer Intelligence offers a one-stop modern marketing platform to comprehensively support the mission of digital intelligence - from digital data collection, management, predictive analytics, and marketing delivery across online and offline channels. On April 19 at SAS Global Forum 2016, SAS Customer Intelligence 360 will make its debut, and digital intelligence will be a primary topic. This new offering will drive unprecedented innovation in customer analytics, putting predictive analytical intelligence directly in the hands of digital marketers, business analysts, and data scientists. In the last few months, industry analysts have previewed and validated our abilities in advanced and customer analytics.

We are very excited for the future and potential of digital intelligence. The question is...

Are you excited?

 

If you enjoyed this article, be sure to check out my other work here. Lastly, if you would like to connect on social media, link with me on Twitter or LinkedIn.

tags: customer intelligence, Data Mining, data science, Digital Analytics, Digital Intelligence, marketing analytics, personalization, predictive analytics, Predictive Marketing, segment of one, web analytics

Web analytics vs. digital intelligence - what's the difference? was published on Customer Intelligence.

1月 062016
 

It’s hard to believe that another year is over. 2015 is behind us; 2016 is ahead. As I looked back over this year, I recalled starting last year at the National Retail Federation Big Show. I presented in the SAS booth on “Optimizing Pricing Decisions.” The presentation was simple and used the concept of […]

The price is right: Four steps to better pricing decisions was published on SAS Voices.