The other day I encountered the following SAS DATA step for generating three normally distributed variables. Study it, and see if you can discover what is unnecessary (and misleading!) about this program:

data points; drop i; do i=1 to 10; x=rannor(34343); y=rannor(12345); z=rannor(54321); output; end; run;

The program creates the POINTS data set. The data set contains three variables, each containing random numbers from the standard normal distribution.
I'm guessing that the author of the program thinks that using `rannor(12345)` to define the `y` variable makes `y` independent from the `x` variable, which is defined by `rannor(34343)`.

Sorry, but that is not correct.

The `x`, `y`, and `z` variables are, indeed, independent samples from a normal distribution, but that fact does not depend on using different seeds in the RANNOR function. In fact, in this DATA step, *all random number seeds except the first one are completely ignored*! Don't believe me? Run the following DATA step and compare the two data sets, as follows:

data points2; drop i; /* change all random number seeds except the first */ x=rannor(34343); y=rannor(1); z=rannor(2); output; do i=2 to 10; x=rannor(10+i); y=rannor(100+i); z=rannor(1000+i); output; end; run; proc compare base=points compare=points2; run;

The COMPARE Procedure Comparison of WORK.POINTS with WORK.POINTS2 (Method=EXACT) NOTE: No unequal values were found. All values compared are exactly equal.

All values compared are exactly equal. Every observation, every variable, down to the last bit. But except for the first observation of the `x` variable, the second DATA step uses completely different random number seeds! How can the POINTS2 data set be identical to the POINTS data set?

As I explained in a previous post on random number seeds in SAS, the random number seed for a DATA step (or SAS/IML program) is set by the *first* call. SAS ignores subsequent seeds within the same DATA step or PROC step. In my previous post, I used the newer (and better) STREAMINIT function and the RAND function instead of the older RANNOR function, but the fact remains that first random number seed determines the random number stream for the entire DATA step.

For further details, see the SAS documentation, which shows an example similar to mine in which three data sets (imaginatively named A, B, and C) contain the same pseudorandom numbers.

Now that I've ranted against using different random number seeds, I will reveal that the DATA step at the beginning of my post is from an example in the SAS Knowledge Base! Yes, even experienced SAS programmers are sometimes confused by the subtleties of random number streams. There is nothing *wrong* with a program that uses multiple seeds, but such a program makes the reader think that all those seeds are actually doing something. They’re not.